\begin{table} \caption{\label{tab5}The second part of Table~\ref{tab_intercal}.} \small%\centerline { \begin{tabular}{ccccccc|c c c|c} \hline \hline Mode & Grade & Source & Model & $N_{\rm H}$ & $\Gamma$ or/and & $F_{{\rm Obs}}$ [0.3--10 keV] & & {\it XMM-Newton} results & & {\it RXTE} results\\ & & & & ($\times 10^{22}$ cm$^{-2}$) & $kT$ (keV) & ($\times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$) & PN & MOS1 & MOS2 & \\ \hline WT & 0--2 & 3C 273 & {\scriptsize WABS(POW} & 0.0179 fixed & $1.57 \pm 0.04$ & & $1.646 \pm 0.011$ & $1.500 \pm 0.028$ & $1.533 \pm 0.025$ & $1.62\pm 0.03$ \\ & & &{\scriptsize+2*zBBODY}) & & $0.050\pm 0.030$ & & $0.074 \pm 0.003$ & $0.089 \pm 0.004$ & $0.072 \pm 0.004$ & \\ & & & & & $0.136\pm 0.060$ & & $0.186 \pm 0.011$ & $0.304 \pm 0.015$ & $0.266 \pm 0.014$ & \\ & & & & & & $16.1\pm 0.3$ & $14.7 \pm 0.1$ & $15.3 \pm 0.1$ & $15.3 \pm 0.14$ & \\ & & & & & & $10.2\pm 0.2$$^\dagger$ & $8.5 \pm 0.1$$^\dagger$ & $9.5 \pm 0.1$$^\dagger$ & $9.3 \pm 0.1$$^\dagger$ & $10.2\pm 0.1$$^\dagger$ \\ WT & 0 & & & & $1.56\pm 0.04$ & & & & & \\ & & & & & $0.046\pm 0.030$ & & & & & \\ & & & & & $0.129\pm 0.090$ & & & & & \\ & & & & & & $\rm 16.5^{+0.3}_{-0.4}$ & & & & \\ & & & & & & $10.2\pm 0.2$$^\dagger$ & & & & \\ \hline \end{tabular}} \medskip $^*$ The abundance parameter was left as a free parameter. \\ $^{**}$ The spectra were extracted using a 40~arcsec radius circle for both {\it Swift}-XRT and {\it XMM-Newton} data. Extended source ARFs were specially created to fit the XRT~spectra. \\ $^\dagger$ The values of the observed flux are given in the 2$-$10~keV energy range. \\ $^{c}$ The model is {\scriptsize CONST*TBABS(BBODYRAD+BBODYRAD)} (see Beuermann et~al. \cite{Beue06}). All the parameters are fixed ($N_{\rm H}=1.1$~$\times$ $10^{20}~{\rm cm}^{-2}$, $kT_1 = 62.8$~eV and $kT_2 = 32.3$~eV) except the constant factor. The lowest temperature black-body component has a minor impact in the XRT~energy range. It was introduced by Beuermann et~al. (\cite{Beue06}) to fit the EUVE data as well as the Chandra data. \\ $^\ddagger$ Values of the constant factor for the model described in Beuermann et~al. (\cite{Beue06}). \end{table}