\begin{table}%T2 \caption{\label{tab:lines}Wavelengths and oscillator strengths of the lines analyzed.} \small%\centerline { \begin{tabular}{p{0.2\linewidth} l l l l p{0.2\linewidth}} \hline\hline\noalign{\smallskip} Species & $\lambda_{\rm rest}$ (\AA) & $\lambda_{\rm obs}$ (\AA) & $\log(gf)$$^a$ & $N_{\rm sat}$ (cm$^{-2}$)$^b$ & Comment \\ \noalign{\smallskip}\hline H{~\sc i}~ & 1025.722 & 1029.389 & 0.0527 & ... & Lyman $\beta$ \\ H{~\sc i}~ & 937.803 & 941.080 & 0.0026 & ... & Lyman $\epsilon$ \\ \hline\noalign{\smallskip} N{~\sc i}~ & 953.415 & 956.797 & 0.0132 & $5\times10^{14}$ & \\ N{~\sc i}~ & 953.655 & 957.031 & 0.0250 & $3\times10^{14}$ & \\ N{~\sc i}~ & 953.970 & 957.343 & 0.0350 & $2\times10^{14}$ & \\ N{~\sc i}~ & 963.990 & 967.040 & 0.0148 & $4\times10^{14}$ & Blended with P{~\sc ii}~$\lambda963.8$ \\ N{~\sc i}~ & 964.626 & 968.029 & 0.0094 & $7\times10^{14}$ & Barely detected \\ N{~\sc i}~ & 965.041 & 968.458 & 0.0040 & $2\times10^{15}$ & Not detected \\ N{~\sc i}~ & 1134.165 & 1138.069 & 0.0134 & $4\times10^{14}$ & Barely detected \\ N{~\sc i}~ & 1134.415 & 1138.303 & 0.0268 & $2\times10^{14}$ & \\ N{~\sc i}~ & 1134.980 & 1138.888 & 0.0402 & $8\times10^{13}$ & \\ \hline\noalign{\smallskip} O{~\sc i}~ & 988.773 & 992.209 & 0.0465 & $1\times10^{14}$ & Saturated \\ O{~\sc i}~ & 1039.230 & 1042.961 & 0.0092 & $5\times10^{14}$ & \\ \hline\noalign{\smallskip} Si{~\sc ii}~ & 1020.699 & 1024.358 & 0.0164 & $2\times10^{14}$ & \\ \hline\noalign{\smallskip} P{~\sc ii}~ & 963.800 & 967.249 & 1.4600 &$2\times10^{12}$ & Blended with N{~\sc i}~ $\lambda963.99$ \\ P{~\sc ii}~ & 1152.818 & 1156.906 & 0.2450 & $2\times10^{13}$ & Not detected \\ \hline\noalign{\smallskip} Ar{~\sc i}~ & 1048.220 & 1051.957 & 0.2630 & $9\times10^{12}$ & \\ \hline\noalign{\smallskip} Fe{~\sc ii}~ & 1144.938 & 1148.976 & 0.1060 & $3\times10^{13}$ & \\ \hline \end{tabular}} \smallskip $^a$ Atomic data are from Morton et~al.\ (\cite{Morton2003}), except for Fe{~\sc ii}~$\lambda$1144.938 for which we take Howk et~al.\ (\cite{Howk2000}).\\ $^b$ $N_{\rm sat}$ is the maximum column density before saturation of a central component with $b=2$\kms\ (Sect.~\ref{sec:multi}). \end{table}