\begin{table}%t2 \caption{\label{T2}Orbital parameters for the two bodies orbiting {HD}~45364, obtained with a \mbox{3-body} Newtonian fit to observational data (Fig.~\ref{F1}).} %\centerline {\small \begin{tabular}{l l c c} \hline \hline \noalign{\smallskip} {\bf Param.} & {\bf [unit]} & {\bf {HD}~45364~b} & {\bf {HD}~45364~c} \\ \hline \noalign{\smallskip} Date & [JD-2400000] & \multicolumn{2}{c}{53500.00 (fixed)} \\ $V$ & [km~s$^{-1}$] & \multicolumn{2}{c}{$ 16.4665 \pm 0.0002 $} \\ $P$ & [day] & $ 226.93 \pm 0.37 $ & $ 342.85 \pm 0.28 $ \\ $\lambda$ & [deg] & $ 105.76 \pm 1.41 $ & $ 269.52 \pm 0.58 $ \\ $e$ & & $ 0.1684 \pm 0.0190 $ & $ 0.0974 \pm 0.012 $ \\ $\omega$ & [deg] & $ 162.58 \pm 6.34 $ & $ 7.41 \pm 4.30 $ \\ $K$ & [m/s] & $ 7.22 \pm 0.14 $ & $ 21.92 \pm 0.43 $ \\ %$T$ & [JD-2400000] & $ 53308.9 \pm 4.1 $ & $ 53250.4 \pm 4.1 $ \\ $i$ & [deg] & $ 90 $ (fixed) & $ 90 $ (fixed) \\ \hline \noalign{\smallskip} $a_1 \sin i$ & $\left[10^{-3}~{\rm AU}\right]$ & $ 0.1485 $ & $ 0.6874 $ \\[1.5mm] $f (M)$ & $\left[10^{-9}~M_\odot\right]$ & $ 0.0085 $ & $ 0.3687 $ \\[1.5mm] $M \sin i$ & $\left[M_{\rm Jup}\right]$ & $ 0.1872 $ & $ 0.6579 $ \\[1.5mm] $a$ & [AU] & $ 0.6813 $ & $ 0.8972 $ \\ \hline \noalign{\smallskip} $N_{\rm meas}$ & & \multicolumn{2}{c}{58} \\ Span & [day] & \multicolumn{2}{c}{1583} \\ rms & [m/s] & \multicolumn{2}{c}{1.417} \\ $\sqrt{\chi^2}$ & & \multicolumn{2}{c}{2.789}\\ \hline \end{tabular}} \smallskip Errors are given by the standard deviation $ \sigma $ and $\lambda$ is the mean longitude of the date ($\lambda = \omega + M$). The orbits are assumed co-planar. \end{table}