\begin{table}%t4 \caption{\label{T4}Quasi-periodic decomposition of the resonant angle $\theta_{\rm b} = 2 \lambda_{\rm b} - 3 \lambda_{\rm c} + \omega_{\rm b}$ for an integration over 100~kyr of the orbital solution in Table~\ref{T2}.} %\centerline {\small \begin{tabular}{rrrrrrrr} \hline\hline \multicolumn{5}{c}{\textbf{Combination}} & \multicolumn{1}{c}{$\nu_i$} &\multicolumn{1}{c}{$A_i$} & \multicolumn{1}{c}{$\phi_i$} \\ \multicolumn{1}{c}{$n_{\rm b}$} & \multicolumn{1}{c}{$n_{\rm c}$}& \multicolumn{1}{c}{$g_1$} & \multicolumn{1}{c}{$g_2$} &\multicolumn{1}{c}{ $l_\theta$} & \multicolumn{1}{c}{(deg/yr)} &\multicolumn{1}{c}{(deg)} & \multicolumn{1}{c}{(deg)} \\ \hline 0 & 0 & 0 & 0 & 1 & 19.8207 & 68.444 & --144.426 \\ 0 & 0 & --1 & 1 & 0 & 0.8698 & 13.400 & 136.931 \\ 0 & 0 & 1 & --1 & 1 & 18.9509 & 8.606 & 168.643 \\ 0 & 0 & --1 & 1 & 1 & 20.6905 & 8.094 & 82.505 \\ 0 & 0 & --2 & 2 & 0 & 1.7396 & 2.165 & --176.138 \\ 0 & 0 & --2 & 2 & 1 & 21.5603 & 0.622 & --50.564 \\ 0 & 0 & 0 & 0 & 3 & 59.4621 & 0.540 & --73.279 \\ 1 & --1 & 0 & 0 & --1 & 172.5756 & 0.506 & 7.504 \\ 1 & --1 & 0 & 0 & 0 & 192.3963 & 0.501 & --46.923 \\ 0 & 0 & --3 & 3 & 0 & 2.6093 & 0.416 & --129.207 \\ 0 & 0 & 2 & --2 & 1 & 18.0811 & 0.420 & 121.712 \\ 1 & --1 & 0 & 0 & 1 & 212.2170 & 0.416 & 78.651 \\ 0 & 1 & --1 & 0 & 0 & 384.7926 & 0.451 & 176.155 \\ 1 & --1 & 0 & 0 & --2 & 152.7549 & 0.424 & --118.070 \\ 0 & 1 & --1 & 0 & --1 & 364.9719 & 0.341 & 50.581 \\ 0 & 1 & --1 & 0 & 1 & 404.6133 & 0.274 & 121.729 \\ 0 & 0 & 1 & --1 & 3 & 58.5923 & 0.212 & --120.210 \\ 1 & --1 & 0 & 0 & 2 & 232.0377 & 0.201 & 24.225 \\ 0 & 0 & --1 & 1 & 3 & 60.3319 & 0.211 & 153.652 \\ 1 & 0 & --1 & 0 & --1 & 557.3682 & 0.182 & --86.342 \\ \hline \end{tabular}} \medskip We have $\theta_{\rm b} = \sum_{i=1}^N A_i \cos(\nu_i~ t + \phi_i)$, where the amplitude and phases~$A_i$, $\phi_i$ are given in degree, and the frequencies $\nu_i$ in degree/year. We only give the first 20~terms, ordered by decreasing amplitude. All terms are identified as integer combinations of the fundamental frequencies given in Table~\ref{T3}. The fact that we are able to express all the main frequencies of $\theta_{\rm b} $ in terms of exact combinations of the fundamental frequencies $ g_1 $, $g_2 $ and $ l_\theta $ is a signature of a very regular motion. \end{table}