\begin{table}%t3 \caption{\label{T3}Quasi-periodic decomposition of the resonant angle $\theta = \lambda_b - 3 \lambda_c + 2 \omega_b$ for the orbital solution~$\Sa$ (Table~\ref{T1}).} \small%\centerline { \begin{tabular}{rrrrrrrr} \hline\hline \multicolumn{5}{c}{\textbf{Combination}} & \multicolumn{1}{c}{$\nu_i$} &\multicolumn{1}{c}{$A_i$} & \multicolumn{1}{c}{$\phi_i$} \\ \multicolumn{1}{c}{$n_b$} & \multicolumn{1}{c}{$n_c$}& \multicolumn{1}{c}{$g_1$} & \multicolumn{1}{c}{$g_2$} &\multicolumn{1}{c}{ $l_\theta$} & \multicolumn{1}{c}{(deg/yr)} &\multicolumn{1}{c}{(deg)} & \multicolumn{1}{c}{(deg)} \\ \hline 0 & 0 & --1 & 1 & 0 & 0.4674 & 63.652 & --81.114 \\ 0 & 0 & 0 & 0 & 1 & 9.0158 & 38.138 & 168.018 \\ 0 & 0 & 1 & --1 & 1 & 8.5484 & 35.869 & 159.131 \\ 0 & 0 & 2 & --2 & 1 & 8.0811 & 25.845 & --29.755 \\ 0 & 0 & 3 & --3 & 1 & 7.6137 & 16.868 & 141.358 \\ 0 & 0 & 4 & --4 & 1 & 7.1464 & 10.622 & --47.528 \\ 0 & 0 & 5 & --5 & 1 & 6.6790 & 6.325 & 123.585 \\ 0 & 0 & 6 & --6 & 1 & 6.2116 & 3.509 & --65.301 \\ 0 & 0 & --2 & 2 & 0 & 0.9347 & 2.697 & 107.773 \\ 0 & 0 & --1 & 1 & 1 & 9.4832 & 2.366 & 176.904 \\ 0 & 0 & 7 & --7 & 1 & 5.7443 & 1.872 & 105.812 \\ 0 & 0 & 3 & --3 & 2 & 16.6295 & 1.156 & 39.376 \\ 0 & 0 & 2 & --2 & 2 & 17.0969 & 0.874 & --131.738 \\ 0 & 0 & --2 & 2 & 1 & 9.9505 & 0.874 & 5.791 \\ 0 & 0 & 0 & 0 & 2 & 18.0316 & 0.828 & 66.035 \\ 0 & 0 & 8 & --8 & 1 & 5.2769 & 0.964 & --83.074 \\ 0 & 0 & 4 & --4 & 2 & 16.1622 & 0.805 & --149.510 \\ 0 & 0 & 1 & --1 & 2 & 17.5642 & 0.499 & --122.851 \\ 0 & 0 & --3 & 3 & 1 & 10.4179 & 0.517 & --165.323 \\ 0 & 0 & --3 & 3 & 0 & 1.4021 & 0.433 & --63.341 \\ 0 & 0 & 9 & --9 & 1 & 4.8096 & 0.482 & 88.040 \\ 1 & --1 & 0 & 0 & 0 & 436.0820 & 0.395 & --173.181 \\ \hline \end{tabular}} \medskip We have $\theta(t) = 180+\sum_{i=1}^N A_i \cos(\nu_i~ t + \phi_i)$. All terms are identified as integer combinations of the fundamental frequencies given in Table~\ref{T2}, which is the signature of a regular motion. \end{table}