\begin{table}%t1 \caption{\label{tbl_pdf}A list of different PDFs used in this paper.} %\centering \par \small \begin{tabular}{ccc} \hline\hline & &\\[-2ex] \multicolumn{2}{c}{$P_{\rm S}(B)$} & $P_{\rm A}(\theta_{B})$ \\[-2ex] & & \\ \hline & & \\[-2ex] (i) & $P_{\rm D}(B)=\delta(B-B_{\rm 0})$ & $P_{\rm iso}(\theta_{B})=\sin\theta_{B}$\\ & & \\[-2ex] (ii)& $P_{\rm M}(B) ={\frac{32}{\pi^2 B_{\rm 0}}} \left({{B}/{B_{\rm 0}}}\right)^2 \exp\left[-{\frac{4}{\pi}}\left({{B}/{B_{\rm 0}}}\right)^2\right] $ & $P_{\rm pl-c}(\theta_{B}) =(p+1) |\cos\theta_{B}|^p \sin\theta_{B}$ \\ & & \\[-2ex] (iii)& $P_{\rm G}(B) ={\frac{2}{\pi B_{\rm 0}}} \exp\left[-{\frac{1}{\pi}}\left({{B}/{B_{\rm 0}}}\right)^2\right]$ & $P_{\rm pl-s}(\theta_{B}) =(\sin\theta_{B})^p \sin\theta_{B}/C_p$\\ & & \\[-2ex] (iv)& $P_{\rm E}(B)={1 \over B_{\rm 0} } \exp(-B/B_{\rm 0})$ & \\[1.7pt] \hline \end{tabular} \end{table}