\begin{table}%t3 \caption{\label{tabsim}Simulated signal for a periodic variation in the outgassing.} %\centerline { \begin{tabular}{lcrrr} \hline\hline\noalign{\smallskip} UT date & $\langle \Delta\rangle$ & Pointing & Time delay & $\frac{\Delta{}Q_{\rm app}}{\Delta{}Q}$ \\[0cm] [mm/dd.d] & [AU] & offset [\arcsec] & [day] & \\ \hline 04/02.6 & 1.087 & 24 & 0.244 & 18\% \\ 04/13.6 & 0.790 & 24 & 0.228 & 24\% \\ 04/27.0 & 0.446 & 30 & 0.199 & 48\% \\ 04/30.0 & 0.383 & 44 & 0.194 & 51\% \\ 05/02.0 & 0.354 & 51 & 0.193 & 53\% \\ 05/02.7 & 0.346 & 51 & 0.191 & 54\% \\ 05/16.0 & 0.435 & 24 & 0.194 & 51\% \\ 05/16.0 & 0.435 & 65 & 0.224 & 35\% \\ 05/16.0 & 0.435 & 122 & 0.399 & 8\% \\ 05/16.0 & 0.435 & 182 & 0.767 & 12\% \\ 05/16.0 & 0.435 & 237 & 0.988 & 12\% \\ \hline \end{tabular}} \par \medskip For a nucleus outgassing rate $Q(t)=25\times(1+0.4\sin(\frac{2\pi t}{19.5~h}))\times10^{28}$~\mols$\!$. \end{table}