\begin{table}%t3 \caption{\label{tab:linefluxes}Properties of rotational water lines, and calculated line fluxes $F_L=\int (F_\nu-F_\nu^{\rm cont})~{\rm d}\nu$ for different line transfer methods.} %\centerline {\tiny \par\begin{tabular}{clccc|ccrc} \hline\hline\noalign{\smallskip} Carrier & Transition & $\lambda~[\mu$m] & $A_{\rm ul}~[{\rm s}^{-1}]$& $E_u{\rm [K]}$ & LTE & ES & MC & $|$ES-MC$|$ \\ \hline o-H$_2$O & $1_{10}$$~\to~$$1_{01}$ & 538.29 & 0.0035 & 61 & 0.702 & 0.531 & 0.538 & 2\%\\ o-H$_2$O & $4_{23}$$~\to~$$3_{12}$$^\star$ & 180.49 & 0.0306 & 194 & 9.27 & 2.32 & 3.39 & 37\%\\ o-H$_2$O & $2_{12}$$~\to~$$1_{01}$$^\star$ & 179.53 & 0.0559 & 114 & 11.9 & 7.69 & 8.59 & 11\%\\ o-H$_2$O & $3_{03}$$~\to~$$2_{12}$ & 174.63 & 0.0505 & 197 & 12.7 & 7.47 & 8.88 & 17\%\\ o-H$_2$O & $2_{12}$$~\to~$$1_{10}$ & 108.07 & 0.256 & 194 & 54.8 & 11.4 & 17.9& 44\%\\ o-H$_2$O & $4_{23}$$~\to~$$3_{12}$$^\star$ & \ 78.74 & 0.484 & 432 & 94.5 & 24.6 & 35.9 & 37\%\\\hline p-H$_2$O & $2_{02}$$~\to~$$1_{11}$ & 303.46 & 0.0058 & 101 & 1.27 & 1.48 & 1.40 & 5\%\\ p-H$_2$O & $1_{11}$$~\to~$$0_{00}$ & 269.27 & 0.0184 & 53 & 2.40 & 2.22 & 2.09 & 6\%\\ p-H$_2$O & $4_{13}$$~\to~$$3_{22}$$^\star$ & 144.52 & 0.0332 & 397 & 5.53 & 4.57 & 4.15 & 9\%\\ p-H$_2$O & $3_{13}$$~\to~$$2_{02}$ & 138.53 & 0.125 & 204 & 14.3 & 7.76 & 8.71 & 12\%\\ p-H$_2$O & $2_{20}$$~\to~$$1_{11}$ & 100.98 & 0.260 & 196 & 32.5 & 8.66 & 10.9 & 23\%\\ p-H$_2$O & $3_{22}$$~\to~$$2_{11}$$^\star$ & \ 89.99 & 0.352 & 297 & 48.0 & 10.2 & 14.0 & 31\%\\ \hline \end{tabular}} \medskip Listed line fluxes are in units $10^{-18}$~W/m$^2$ for distance 140~pc and inclination $30^\circ$. $^\star$ Indicates that this line will be observed by the Herschel OT Key Programme {\sc gasps}. ES~=~escape probability, MC~=~Monte Carlo. \end{table}