\begin{table}%t1 \caption {\label{tab:ml}{Mass-to-light ratio in $V$}, using the colour transformation\protect $V=r+0.27$ \citep{smi02}.} $$ \begin{array}{p{0.19\linewidth}ccc} \hline\hline \noalign{\smallskip} Case & M/L_V & M/L_V & M/L_V^{{a}} \\ & { (\sigma_{R}=45~{\rm km~s^{-1}})} & { (\sigma_{\rm R}=71~{\rm km~s^{-1}})} & { (\sigma_{\rm R,Alt}=10~{\rm km~s^{-1}})} \\ \noalign{\smallskip} \hline \noalign{\smallskip} % r-band: table_r_5.txt %cat table_r_5.txt | awk '{printf"%5.2f %5.2f %5.2f\n",$1*10**(0.4*0.265),$2*10**(0.4*0.265),$3*10**(0.4*0.265)}' $Q=1$ & 11.2 & 25.0 & 0.9 \\ %1.0 (thin) $Q=1.5$ & 7.4 & 16.7 & 0.6 \\ %0.7 (thin) $Q=2$ & 5.6 & 12.5 & 0.4 \\ %0.5 (thin) $\lambda=\lambda_{\rm max}$ & 2.9 & 6.2 & 0.8 \\ % 0.8 (thin) \noalign{\smallskip} \hline \noalign{\smallskip} Stellar & \multicolumn{3}{c}{1.4^{+1.4}_{-0.8}} \\ \noalign{\smallskip} \hline \end{array} $$ $^{{a}}$ The alternative scenario, in which only part of the observed velocity dispersion is attributed to the disk (see Sect.~\ref{sec:discuss}). \end{table}