\begin{table}%t8 \caption{\label{king_t}Physical parameters of the Arches cluster.} \small%\centerline { \begin{tabular}{l c c l} \hline\hline Parameter & & Value & Comments \\ \hline Core radius &$R_{\rm c}$ & $0.14\pm0.05$ pc & Derived by fitting the empirical King density law \\ & & &to the observed $\Sigma(R)$\\ Tidal radius &$R_{\rm t}$ & ${\sim}1$ pc & Derived by Kim et~al. (\cite{kim2}) \\ Central concentration &$c= \log \frac{R_{\rm t}}{R_{\rm c}}$ & $0.84$ & Comparable to the less concentrated galactic globulars\\ & & &according to Harris (\cite{harris})\\ Central surface density&$\Sigma_{0}$ & $2.2({\pm}0.4)\times10^{3}~{\rm stars~pc}^{-2}$ & Derived by fitting the empirical King density law \\ & & &to the observed $\Sigma(R)$\\ Central volume density &$\rho_{0}$ & $8.0({\pm}1.5)\times10^{3}~{\rm stars~pc}^{-3}$ & \\ Central mass density &$\rho_{\rm m,0}$ & $2.0({\pm}0.4)\times10^{5}~M_{\odot}~{\rm pc}^{-3}$ & For an average mass of $25.4~M_{\odot}$ in the ${>}10~M_{\odot}$ range \\ Cluster mass &$M_{\rm cl,1}$ & ${\sim}2.0(\pm0.6)\times10^{4}~M_{\odot}$ & For an extrapolation of the photometric mass down to $1~M_{\odot}$\\ \quad &$M_{\rm cl,2}$&${\sim}3.1(\pm0.6)\times10^{4}~M_{\odot}$&For an extrapolation down to $0.08~M_{\odot}$ using a Kroupa IMF (\cite{kroupa})\\ Predicted & & &\\ velocity dispersion$^{a}$ &$\sigma=\left(\frac{0.4~GM_{\rm cl}}{R_{\rm hm}}\right)^{1/2}$ & $9~{\rm km~s}^{-1}$ & Using $M_{\rm cl,1}$ and a half mass radius of $0.4$~pc derived in SGB02\\[4pt] \hline \end{tabular}} \medskip $^{{a}}$ Equations~(4)--(80b) of Binney \& Tremaine (\cite{binney}). \end{table}