\begin{table}%t5 \par \caption {\label{ssc-fit-1}SSC best fit results for 2005 March 31~\swf~ observation and using a log-parabolic electron distribution as defined in Eq.~(\ref{eq-lpep-elec}).} %%\centerline {\begin{tabular}{llllllllll} \hline\hline \noalign{\smallskip} Date &$B$ &$R$ &$\delta$ &$N(*)$ &$r$ &$\gamma_{p}(**)$ &$\gamma_{\rm max}$ &$\gamma_{\rm min}$ &$u_e{}/u_{b}$\\ &G &cm & &$\mbox{cm}^{-3}$ & & &\\ \hline 31-03-2005 &$0.075$ &$1.5\times10^{15}$ &25 &4 &1.3 &$4.0\times10^{3}$&$2.5\times10^{6}$&$1.1\times10^{3}$& 220\\ \hline \noalign{\smallskip} \end{tabular} } \par \smallskip (*) $N=\int n(\gamma)\rm d\gamma$.\\ (**) Do not confuse $\gamma_{c}$ (the turn-over energy in Eq.~(\ref{lppl-elec})) with $\gamma_{\rm p}$ (the peak energy in Eq.~(\ref{eq-lpep-elec})).\\ (***) $\gamma_{\rm p}^{\rm LP}$ represents $\gamma_{\rm p}$ obtained from extrapolating the log-parabolic branch of the distribution described by Eq.~(\ref{lppl-elec}). These values can be compared with $\gamma_{\rm p}$ from 2005 March~31. \end{table}