\begin{table}%t1 \caption{\label{tab:res_fits_all}Best-fit models of edge-on differentially rotating discs. The parameters \Dv~= 0.432~\kms\ and $D~\Omega_{\rm s0}$~= 0.064~\kmsmas\ are determined directly from the data and are common to all models. The distance to the source $D$~=~2.7~kpc.} \small%%\centerline { \begin{tabular}{ccccccccc} \hline\hline %&&&&&&&& \\[-8pt] $\alpha$$^a$ & $p$$^a$ &$\gamma$$^a$ & $r_1$$^a$ & $X$$^a$ & $\Omega_1$$^b$ & $\v_1$$^b$ & \ri, \ro$^c$ & \mi, \mo$^d$ \\ & & & [mas (AU)] & [\%] & [\kmsmas] & [\kms] & & [\Mo] \\ \hline %&&&&&&&& \\[-8pt] +0.7 & 4 & 0.005 & 0.2\ (0.5) & 4.45 & 0.213 & 0.04 & 10$^{-7}$, 409.3 & $1.4\times 10^{-23}$, 1.7 \\ +0.6 & 4 & 0.007 & 0.4\ (1.1) & 3.58 & 0.239 & 0.1 & $10^{-7}$, 233.4 & $5.1\times 10^{-21}$, 2.1 \\ +0.5 & 4 & 0.009 & 0.8\ (2.1) & 2.81 & 0.255 & 0.2 & 10$^{-7}$, 158.1 & $9.6\times 10^{-18}$, 2.4 \\ +0.4 & 4 & 0.01 & 1.1\ (2.9) & 2.70 & 0.279 & 0.3 & 10$^{-7}$, 135.3 & $7.4\times 10^{-17}$, 2.0 \\ +0.3 & 6 & 0.005 & 14 \ (39) & 2.92 & 0.110 & 1.6 & 10$^{-7}$, 18.5 & $7.2\times 10^{-13}$, 12.1 \\ +0.2 & 6 & 0.01 & 18 \ (50) & 3.06 & 0.086 & 1.6 & 10$^{-7}$, 12.1 & $2.3\times 10^{-11}$, 4.8 \\ +0.1 & 6 & 0.05 & 32 \ (88) & 3.07 & 0.055 & 1.8 & 10$^{-7}$, 5.4 & $1.3\times 10^{-9}$, 2.4 \\ 0 & 6 & 0.2 & 45 \ (123) & 3.09 & 0.044 & 2.0 & 10$^{-7}$, 3.2 & $5.5\times 10^{-8}$, 1.8 \\ $-$0.1 & 6 & 0.3 & 49 \ (133) & 3.09 & 0.040 & 2.0 & 10$^{-7}$, 2.8 & $1.5\times 10^{-6}$, 1.4 \\ $-$0.2 & 6 & 0.5 & 57 \ (153) & 3.08 & 0.039 & 2.2 & 0.07, 2.4 & 0.2, 1.4 \\ $-$0.3 & 6 & 0.7 & 63 \ (171) & 3.07 & 0.038 & 2.4 & 0.07, 2.2 & 0.4, 1.5 \\ $-$0.4 & 8 & 0.9 & 90 \ (242) & 3.04 & 0.035 & 3.1 & 0.07, 1.7 & 1.5, 2.9 \\ $-$0.5 & 10 & 1.0 & 110\ (298) & 2.99 & 0.032 & 3.5 & 0.07, 1.5 & 4.1 \\ \hline $-$0.5 & 12 & 1.0 & 160\ (431) & 3.04 & 0.031 & 4.9 & 0.07, 1.5 & 12 \\ $-$0.5 & 12 & 1.0 & 220\ (594) & 3.07 & 0.031 & 6.8 & 0.07, 1.5 & 31 \\ $-$0.5 & 12 & 1.0 & 440\ (1187) & 3.09 & 0.031 & 13.5 & 0.07, 1.5 & 245 \\ $-$0.5 & 12 & 1.0 &1000\ (2700) & 3.09 & 0.031 & 30.8 & 0.07, 1.5 & 2881 \\ \hline \end{tabular}} \medskip \par $^a$ The free parameters $\alpha$, $p$, $\gamma$ and $r_1$ are determined from fits that minimise~$X$, the error average over the entire central feature in the \pv\ (Eq.~(\ref{eq:x})). \\ $^b$ Equation~(\ref{eq:omegas_app}) determines $\Omega_1$, the angular velocity at $r_1$, and $\v_1 = \Omega_1 r_1$ is the corresponding rotational velocity. \\ $^c$ Inner and outer radii (in multiples of $r_1$) where the maser absorption coefficient drops to~5\% of the maximum. \\ $^d$ Dynamical masses enclosed in $\rho_{\rm in}$ and $\rho_{\rm out}$ (Eq.~(\ref{eq:mass_gen})). Note that $\rho_{\rm in} = \rho_{\rm out}$ for Keplerian rotation, and the lower part of the table lists additional solutions for this case with progressively increasing central mass. \end{table}