\begin{table} %ta2 \caption{\label{taba2}Distribution of accumulated helicity and tilt angle evolution in the southern hemisphere.} \par %\centerline {\small \begin{tabular}{lllllll} \hline \hline\noalign{\smallskip} Type & NOAA & $\textrm{Helicity sign}^{{\rm a}}$ & $\textrm{Helicity}^{{\rm b}}$ & $\textrm{Rotation}^{{\rm c}}$ & $\Delta \textrm{Ta}^{{\rm d}}$ & $\textrm{Joy's law}^{{\rm e}}$ \\ \hline & 9139 & $-$ & $-$20.5 & $-$ & $-$22.8 & F \\ & 9399 & $-$ & $-$14.1 & $-$ & $-$18.4 & F \\ & 10569 & $-$ & $-$5.93 & $-$ & $-$14.3 & F \\ & 9897 & $-$ & $-$1.68 & $-$ & $-$37.9 & F \\ & 10078 & $-$ & $-$0.021 & $-$ & $-$27.1 & F \\ & 9873 & $-$ & $-$26.8 & $-$ & $-$61 & T \\ & 8118 & $-$ & $-$6.39 & $-$ & $-$30.2 & T \\ & 10141 & $-$ & $-$5.91 & $-$ & $-$70.3 & T \\ & 10692 & $-$ & $-$4.12 & $-$ & $-$22.4 & T \\ & 10135 & $-$ & $-$0.13 & $-$ & $-$31.3 & T \\ & 10298 & + & 2.24 & + & 11 & F \\ A & 10671 & + & 21.6 & + & 36.9 & F \\ & 10270 & + & 1.01 & + & 53.4 & T \\ & 10426 & + & 1.07 & + & 0.2 & T \\ & 10072 & + & 1.68 & + & 16.6 & T \\ & 10291 & + & 2.12 & + & 25.5 & T \\ & 10376 & + & 7.08 & + & 21.9 & T \\ & 8016 & + & 8.43 & + & 60.4 & T \\ & 10828 & + & 9.02 & + & 39 & T \\ & 10869 & + & 17.2 & + & 15.8 & T \\ & 9710 & + & 15.9 & + & 37.9 & T \\ & 10591 & + & 17.7 & + & 28 & T \\ & 9396 & + & 22.2 & + & 8.58 & T \\ & 9417 & + & 31.9 & + & 8.11 & T \\ \hline & 10684 & $-$ & $-$0.11 & + & 4.1 & F \\ & 10481 & $-$ & $-$0.2 & + & 16.5 & F \\ & 10454 & $-$ & $-$2.5 & + & 10.5 & T \\ & 8167 & $-$ & $-$1.28 & + & 2.9 & T \\ B & 10006 & + & 0.351 & $-$ & $-$65.3 & F \\ & 10489 & + & 1.14 & $-$ & $-$18.7 & F \\ & 8174 & + & 1.49 & $-$ & $-$6.3 & T \\ & 10499 & + & 3.15 & $-$ & $-$6.9 & T \\ & 10837 & + & 3.6 & $-$ & $-$28 & T \\ \hline \end{tabular}} \par \medskip $^{a}$~The sign + ($-$) in the helicity column represents positive (negative) helicity. $^{b}$~The unit of helicity is $10^{41}Mx^2$. $^{c}$~The sign -- (+) in the rotation direction column represents the active region rotating clockwise (counter-clockwise). $^{d}$~The unit of $\Delta $Ta is degree. $^{e}$~T (F) shows that the active region satisfies (disobeys) Joy's law. \end{table}