\begin{table}%t7 \par \caption {\label{tab:inclinations}Rotation periods of stars with known inclinations.} %\centerline { \begin{tabular}{lcccccc} \hline \hline \multicolumn{1}{c}{Object} & \multicolumn{1}{c}{Inclination} & \multicolumn{1}{c}{Adopted} & \multicolumn{1}{c}{$v$~sin~$i$} & \multicolumn{1}{c}{$v_{\rm eq}$} & \multicolumn{1}{c}{$R$} & \multicolumn{1}{c}{$P$} \\ \multicolumn{1}{c}{name} & \multicolumn{1}{c}{Measurements} & \multicolumn{1}{c}{Inclination} & \multicolumn{1}{c}{[km s$^{-1}$]} & \multicolumn{1}{c}{[km s$^{-1}$]} & \multicolumn{1}{c}{[$R_{\odot}$]} & \multicolumn{1}{c}{[d]} \\ & \multicolumn{1}{c}{[$^\circ{}$]} & \multicolumn{1}{c}{[$^\circ{}$]} & & & & \\ \hline %HD 53179 & 60 & 60 & 100 & 115 & 14.4 & 6.3 \\ HD~95881 & 40$-$55$^1$ & 40$-$55 & 50$^q$ & 61$-$78 & 3.1$^{dd}$ & 2.0$-$2.6 \\ HD~97048 & 30$-$40$^a$ & 30$-$40 & 140$^r$ & 218$-$280 & 2.5$^{ee}$ & 0.5$-$0.6 \\ & 42.8$^b$ & & & & & \\ HD~100453 & $>$55$^2$ & $>$55 & 39$^s$ & $<$48 & 1.7$^{ff}$ & $>$1.8 \\ HD~100546 & 42$^c$ & $47\pm5$ & 65$^t$ & 82$-$97 & 1.7$^{ff}$ & 0.9$-$1.0 \\ & 51$^d$ & & & & & \\ HD~101412 & $>$55$^3$ & $>$55 & 5$^u$ & $<$6.1 & 2.1$^{gg}$ & $>$17.4 \\ HD~135344B & 11$^e$ & 11 & 69$^v$ & 362 & 2.4$^{gg}$ & 0.3 \\ & 14$^f$ & & & & & \\ HD~139614 & $<$40$^g$ & $<$40 & 15$^{w}$ & $>$23 & 1.6$^{dd}$ & $<$3.5 \\ HD~144432 & 48~$\pm$~10$^e$ & 48~$\pm$~10 & 70$^{w}$ & 83$-$114 & 3.0$^{ff}$ & 1.3$-$1.8 \\ HD~144668 & 58$^h$ & 58 & 100$^{w}$ & 118 & 3.9$^{ee}$ & 1.7 \\ HD~150193 & $\sim$38$^i$ & 30$^5$ & 100$^t$ & 200 & 2.1$^{ee}$ & 0.5 \\ HD~152404 & 65$-$70$^j$ & 65$-$70 & $18.5\pm1$$^j$ & 18.5$-$21.5 & 2.6$^{dd}$ & 6.1$-$7.1 \\ HD~158643 & $\sim$90$^k$ & 90 & $267\pm5$$^v$ & 267~$\pm$~5 & 5.3$^{hh}$ & 1.0 \\ & & & 228$^{x}$ & 228 & & \\ HD~163296 & 51$^{+11,}_{-9}$$^l$ & 51 & 130$^{w}$ & 167 & 2.8$^{ee}$ & 0.8 \\ HD~169142 & 13~$\pm$~2$^e$ & $13\pm2$ & $66\pm2$$^v$ & 247$-$356 & 1.6$^{dd}$ & 0.2$-$0.3 \\ VV~Ser & 72~$\pm$~5$^f$ & 72 & 142$^{y}$ & 149 & 2.4$^{ee}$ & 0.8 \\ & & & 229$^{z}$ & 241 & & \\ HD~179218 & $40\pm10$$^e$ & $40\pm10$ & 60$^{aa}$ & 78$-$120 & 4.8$^{gg}$ & 2.0$-$3.1\\ HD~190073 & $<$40$^4$ & $<$40 & 12$^{bb}$ & $>$18.7 & 3.3$^{ff}$ & $<$8.9 \\ \hline HD~9672 & 90$^m$ & 90 & 196$^{x}$ & 196 & 1.7$^{ii}$ & 0.4 \\ HD~39060 & 87$^n$ & 87 & 130$^k$ & 130 & 1.8$^{jj}$ & 0.7 \\ HD~109573 & 73$^o$ & 73 & 152$^{x}$ & 159 & 1.8$^{gg}$ & 0.6 \\ HD~181327 & 31.7$^p$ & 31.7 & 16$^{cc}$ & 30 & 1.2$^{gg}$ & 2.0 \\ %\hline %HD~31648 & 38$^q$ & 38 & 90$^{hh}$ & 146 & 2.5$^{ccc}$ & 0.9 \\ % & 36$\pm$1$^r$ & & & & & \\ %HD~104237 & 18$^s$ & 18 & 10$^v$ & 32 & 2.7$^{ccc}$ & 4.3 \\ \hline \end{tabular}} \par \smallskip \par Notes: Inclination angles derived for resolved disk detections from the literature and from the study of \ion{Mg}{ii} spectral line profiles in UV spectra or the study of H$\alpha$ line profiles in optical spectra and the inclination values we finally adopt for further use are listed in Cols.~2 and 3. $v$~sin~$i$ values and radii presented in Cols.~4 and 6, respectively, are for the most part gathered from the literature. In Col.~7 we present the equatorial velocity values which are obtained from the inclination angles and the $v$~sin~$i$ values. $v_{\rm eq}$ and radii are used to estimate the rotation periods listed in the last column. Radii marked as {\it this study} were calculated using \teff{} and bolometric luminosity, both taken from the literature.\\ References: $^a$ Doering et~al.\ (\cite{Doering2007}), $^b$ Doucet et~al.\ (\cite{Doucet2007}), $^c$ Ardila et~al.\ (\cite{Ardila2007}), $^d$ Augereau et~al.\ (\cite{Augereau2001}), $^e$ Dent et~al.\ (\cite{Dent2005}), $^f$ Pontoppidan et~al.\ (\cite{Pontoppidan2008}), $^{g}$ Meeus et~al.\ \cite{Meeus1998}, $^h$ Preibisch et~al.\ (\cite{Preibisch2006}), $^i$ Fukagawa et~al.\ (\cite{Fukagawa2003}), $^j$ Alencar et~al.\ (\cite{Alencar2003}), $^k$ Slettebak (\cite{Slettebak1982}), $^l$ Wassell et~al.\ (\cite{Wassell2006}), $^m$ Hughes et~al.\ (\cite{Hughes2008}), $^n$ Heap et~al.\ (\cite{Heap2000}), $^o$ Schneider et~al.\ (\cite{Schneider1999}), $^p$ Schneider et~al.\ (\cite{Schneider2006}), $^q$ Grady et~al.\ (\cite{Grady1996}), $^r$ van den Ancker (\cite{vandenAncker1998}), $^s$ Acke \& Waelkens (\cite{AckeWaelkens2004}), $^t$ Hamidouche et~al.\ (\cite{Hamidouche2008}), $^{u}$ this study (see Sect.~\ref{subsect:discussion_withfield}), $^v$ Dunkin et~al.\ (\cite{Dunkin1997}), $^{w}$ Hubrig et~al.\ (\cite{Hubrig2007b}), $^{x}$ Royer et~al.\ (\cite{Royer2007}), $^{y}$ Vieira et~al.\ (\cite{Vieira2003}), $^{z}$ Mora et~al.\ (\cite{Mora2001}), $^{aa}$ Bernacca \& Perinotto (\cite{BernaccaPerinotto1970}), $^{bb}$ Pogodin et~al.\ (\cite{Pogodin2005}), $^{cc}$ de la Reza \& Pinz\'on (\cite{delaRezaPinzon2004}), $^{dd}$~Blondel \& Tjin (\cite{Blondel2006}), $^{ee}$ Hillenbrand et~al.\ (\cite{Hillenbrand1992}), $^{ff}$ Wade et~al.\ (\cite{Wade2007}), $^{gg}$ this study (see table caption), $^{hh}$ Tatulli et~al.\ (\cite{Tatulli2008}), $^{ii}$ Hughes et~al.\ (\cite{Hughes2008}), and $^{jj}$ di Folco et~al.\ (\cite{diFolco2004}).\\ %$^q$Simon et~al.\ (\cite{Simon2000}), %$^r$Pi\`etu et~al.\ (\cite{Pietu2006}), %$^s$Grady et~al.\ (\cite{Grady2004}), %$^z$Th\'e et~al.\ (\cite{The1985}), %$^{hh}$Beskrovnaya et~al.\ (\cite{Beskrovnaya2004}), %$^a$Meeus et~al.\ \cite{Meeus2002}, %$^x$this work, %$^x$Guimar\~aes et~al.\ (\cite{Guimaraes2006}), %Bernasconi \& Maeder (\cite{BernasconiMaeder1996}), Comments on the inclination angles deduced in this study, mainly from IUE (LWR and LWP cameras) through analysis of line profile types. Profile shapes are classified according to Beals (\cite{Beals1951}). See also the discussion in Sect.~\ref{subsect:discussion_withfield}. $^1$ \ion{Mg}{ii} alternates between P~Cygni type I (red emission, with blue-shifted absorption, IUE LWP 30~772) and type III (double emission, IUE LWP 13~082), $^2$ the H$\alpha$ profile shown by Meeus et~al.\ (\cite{Meeus2002}) shows characteristic double-peaked H$\alpha$~emission, $^3$ see the discussion in Sect.~\ref{subsect:discussion_withfield}, $^4$ \ion{Mg}{ii} has a type~I P~Cygni profile (IUE LWP 25~762, LWR 11~977, LWR 08~996), $^5$ \ion{Mg}{ii} has a type~I profile (IUE LWP 13~083). % %Comments on used IUE (LWR and LWP cameras) and HST spectra and deduced types of line profiles. %Profile shapes are classified according to Beals (\cite{Beals1951}). Representative observations are indicated for each star. %$^1$\ion{Mg}{ii} alternates between P~Cygni type I (red emission, with blue-shifted absorption, IUE LWP 30772) and type III (double emission, IUE LWP 13082) type III, %$^2$\ion{Mg}{ii} absorption (IUE LWR 11429, LWP 09517) with some filling in to the continuum (IUE LWP 21212, LWP 18869), %$^3$\ion{Mg}{ii} is highly variable, ranging from type I P~Cygni (HST/STIS O5C902040), to inverse %P~Cygni (IUE LWP 30172) to type III (double emission, IUE LWP 30771), %$^4$\ion{Mg}{ii} has a type III profile (double emission, IUE LWP 30393), %$^5$\ion{Mg}{ii} has a type III profile (double emission, IUE LWP 05470, LWP 06365, LWP 18717, LWR 10426, LWR 16729 LWP 21268, LWP 22612, LWP 32570, and LWP 32568), %$^6$\ion{Mg}{ii} has a type I profile (IUE LWP 13083), %$^7$\ion{Mg}{ii} has a type III profile (IUE LWP 13006, LWP 08847), %$^8$\ion{Mg}{ii} is in absorption (IUE LWP 22816, LWP 05834, LWP 30241, LWP 15172; HST/STIS O6LT01060), %$^9$\ion{Mg}{ii} has alternated between type III (IUE LWR 06965) and type I (IUE LWP 11848, LWP 30190, LWP 8766; HST/STIS O66Q01020), %$^{10}$\ion{Mg}{ii} has single emission partially filling in photospheric absorption (IUE LWP 30558), %$^{11}$\ion{Mg}{ii} has emission which appears to be type I P~Cygni partially filling in the %photospheric absorption (IUE LWP 12989), %$^{12}$\ion{Mg}{ii} has a type I P~Cygni profile (IUE LWP 25762, LWR 11977, LWR 08996). % %Comments on used IUE and HST spectra and deduced types of line profiles:\\ %$^1$LWP 30772 type I, LWP 13082 type III, %$^2$LWR 11429, LWP 09517 abs; LWP 21212 and 18869 filled in to continuum level; possible type III but no net emission, %$^3$LWP 30172 inv.\ P Cygni I with high vel.\ abs.\ LWP 30771 type III; variable absorption (Grady et~al.\ \cite{Grady1997}) ; type I for STIS O5C902040, %$^4$type III LWP 30393, %$^5$type III LWP 05470, LWP 06365, LWP 18717, LWR 10426, LWR 16729 LWP 21268, LWP 22612, LWP 32570, LWP 32568, %$^6$type I LWP 13083, %$^7$type III LWP 13006, LWP 08847, %$^8$abs; LWP 22816, LWP 05834, LWP 30241, LWP 15172 ; abs STIS O6LT01060, %$^9$type III LWR06965, type I LWP 11848, LWP 30190; LWP 8766 ; I for STIS O66Q01020, %$^{10}$single emission partially filling in photospheric absorption with ISM abs superposed, %$^{11}$blueshifted absorption (wind) LWP 12989, %$^{12}$type I LWP 25762, LWR 11977, LWR 08996, %$^{13}$LWP 18883, and %$^{14}$LWP 20324, LWP 25942, LWP 16072; LWP 27481 all type I P~Cygni profiles. \end{table}