\begin{table}%t1 \par \caption{\label{tab:results}Constraints on PBHs of mass $M_{\star}$ for different dark matter distributions$^{{a}}$.} % %\begin{center} \par %\centerline { \begin{tabular}{llcc} \hline\hline % after \\ : \hline or \cline{col1-col2} \cline{col3-col4} ... DM distribution & $f(M_{\star})$ & $\Omega_{\rm PBH}(M_{\star})$ & $\beta(M_\star)$ \\ \hline Moore & $ 6.04 \pm 0.05\times 10^{-9}$ & $1.38\times 10^{-9}$ & $0.98\times 10^{-27}$ \\ Moore$_{\rm c}$ & $ 1.07 \pm 0.07\times 10^{-9}$ & $0.24\times 10^{-9}$ & $0.17\times 10^{-27}$ \\ NFW & $ 6.70 \pm 0.05\times 10^{-9}$ & $1.53\times 10^{-9}$ & $1.08\times 10^{-27}$ \\ NFW$_{\rm c}$ & $ 1.93 \pm 0.08\times 10^{-9}$ & $0.44\times 10^{-9}$ & $0.31~10^{-27}$ \\ isothermal & $11.62 \pm 0.04\times 10^{-9}$ & $2.65\times 10^{-9}$ & $1.87\times 10^{-27}$ \\ \hline \end{tabular}} \par \smallskip $^{a}$ $f$ is the maximum fraction of dark matter in the form of PBHs, $\Omega_{\rm PBH}(M_{\star})$ is the corresponding cosmological density, and~$\beta$ is the fraction of regions undergoing collapse when the mass enclosed within the cosmological horizon was $M_{\star}$. \par \end{table}