\begin{table}%t1 \caption{\label{table_budgets}Mass, energy and luminosity budgets of the preshock and postshock gas in the Stephan's Quintet galaxy-wide shock, directly inferred from observations$^a$.} \small%\centerline $$ { \begin{tabular}{c| c c c | c c c c c} \hline \hline & \multicolumn{3}{c |}{P{\sc reshock} G{\sc as}} & \multicolumn{5}{c}{P{\sc ostshock} G{\sc as}} \\ \hline %&&&&&&&& \\[-8pt] & Hot Plasma$^b$ & H{\sc i}$^d$ & $\rm H_2$ & Hot Plasma$^b$ & H{\sc ii}$^c$ & H{\sc i}$^d$ & Warm $\rm H_2$$^e$& Cold $\rm H_2$ \\ Density $n_{\rm H}$ [cm$^{-3}$] & & & & 0.02 & & & & \\ Temperature $T$ [K] & & & & $5 \times 10^{6}$ & & & 185 & ${<}10^{2}$ \\ Pressure $P / k_{\rm B}$ [K cm$^{-3}$] & & & & $2 \times 10^{5}$ & & & & \\ $N_{\rm H}$ [cm$^{-2}$] & & $3 \times 10^{20}$ & & & $1.4 \times 10^{19}$ & ${<}5.8 \times 10^{19}$ & $2 \times 10^{20}$ & \\ \hline %&&&&&&&& \\[-8pt] \multirow{2}*{Mass Budget [$M_{\odot}$]} & Hot Plasma$^b$ & H{\sc i}$^d$ & $\rm H_2$ & Hot Plasma$^b$ & H{\sc ii}$^c$ & H{\sc i}$^d$ & Warm $\rm H_2$$^e$& Cold $\rm H_2$ \\ & $ 6 \times 10^6 $ & $2{-}6 \times 10^{7}$ & & $ 1.4 \times 10^{7}$ & $1.2 \times 10^6$ & ${<} 5 \times 10^6$ & $ 3 \times 10^7$ & \\ \hline %&&&&&&&& \\[-8pt] \multirow{3}*{Energy Budget [erg]} & \multicolumn{1}{c}{Thermal} & \multicolumn{2}{c |}{Bulk Kinetic} & \multicolumn{2}{c}{Thermal} & \multicolumn{3}{c}{Bulk Kinetic$^f$} \\ & \multicolumn{1}{c}{(Plasma in halo)} & \multicolumn{2}{c |}{(Shocked H$~${\sc i} gas)} & \multicolumn{2}{c}{(X-ray emitting plasma)} & \multicolumn{3}{c}{(Turbulent $\rm H_2$)} \\ & $ 1.7 \times 10^{55}$ & \multicolumn{2}{c |}{$1{-}3 \times 10^{56}$} & \multicolumn{2}{c}{$4 \times 10^{55}$} & \multicolumn{3}{c}{${\ga}1.2 \times 10^{56}$} \\ \hline %&&&&&&&& \\[-8pt] \multirow{2}*{Flux [W m$^{-2}$]} & \multicolumn{1}{c}{X-rays} & & & \multicolumn{1}{c}{X-rays} & \multicolumn{1}{c}{H$~ \alpha$} & \multicolumn{1}{c}{O{\sc i}} & \multicolumn{1}{c}{H$_{2}${}$^e$}\\ & $2.3 \times 10^{-18}$ & & & $1.1 \times 10^{-17}$ & $5.1 \times 10^{-18}$ & $3.6 \times 10^{-18}$ & $5.5 \times 10^{-17}$ \\ \hline \multirow{2}*{Luminosity$^g$ [erg s$^{-1}$]} & \multirow{2}*{$2.5 \times 10^{39}$} & \multicolumn{2}{c|}{} & \multirow{2}*{$1.2 \times 10^{40}$} & \multirow{2}*{$5.4 \times 10^{39}$} & \multirow{2}*{$3.8 \times 10^{39}$} & \multirow{2}*{$5.8 \times 10^{40}$} \\ & & & & & & & & \\ \hline \end{tabular}}$$ \medskip $^a$ All the numbers are scaled to our aperture (${\cal A} = 5.2$~$\times$ $2.1$~kpc$^{2}$) where \textit{Spitzer} observations were performed. The preshock gas is mainly the H{\sc i}~gas contained in the tidal tail of NGC~7319. After the shock, the mass is distributed between the hot X-ray emitting plasma and the $\rm H_2$~gas (see text for details). Before the shock, most of the energy available is the kinetic energy of the H{\sc i}~gas that will be shocked. The shock splits the energy budget in two parts: thermal and kinetic energy. The former is stored in the hot plasma whereas the latter goes into turbulent motions that heat the $\rm H_2$~gas. Observations show that mechanical energy is the dominant energy reservoir. \\ $^b$ XMM-Newton observations of the extended X-ray emission in the shock and the tidal tail \citep{2005AetA...444..697T}. \\ $^c$ H$~ \alpha$ and O{\sc i} optical line observations by \citet{2003ApJ...595..665X}. \\ $^d$ Based on extrapolation of H{\sc i} observations in the tidal tail by \citet{2001AJ....122.2993S, Williams2002}. \\ $^e$ From \textit{Spitzer IRS} observations. The $\rm H_2$~line flux is summed over the S(0) to S(5)~lines \citep{2006ApJ...639L..51A}. \\ $^f$ This bulk kinetic energy is a lower limit because an unknown mass of turbulent cold molecular gas can contribute to this energy. \\ $^g$ Luminosities are indicated assuming a distance to SQ of 94~Mpc. \end{table}