\begin{table}%t2 \caption{\label{table_results}Overview of the emission of the SQ~postshock gas, from observations and model predictions$^a$. The models are the same as those used in~Fig.~\ref{Fig_H2excitDiag_SQ}.} \small%\centerline { \begin{tabular}{ c | c c c c | c c c c c} \hline \hline %&&&&&&&&& \\[-8pt] & & & & & \multicolumn{5}{c}{F{\sc lux of} S{\sc pectral} F{\sc eatures} ($10^{-18}$ W~m$^{-2}$)} \\ \cline{6-10} %&&&&&&&&& \\[-8pt] & Mass Flow & $P/k_{\rm B}$ & $V_{\rm s}$$^b$ & Cooling Time$^c$ & \multirow{2}*{O{\sc i} [$63~\mu$m]} & \multirow{2}*{$\rm H_2$ rot.$^d$} & \multirow{2}*{$\rm H_2$ 1--0 S(1)} & \multirow{2}*{O{\sc i} $6300$~\AA$^e$ } & \multirow{2}*{$\rm H_{\alpha}$$^e$} \\ & [$M_{\odot}$~yr$^{-1}$] & [K~cm$^{-3}$] & [km~s$^{-1}$] & [yr] & & & & \\ \hline Observations & & & & & & $55 \pm 3$ & & 3.6 & 5.3 \\ \hline %&&&&&&&&& \\[-8pt] \multirow{2}*{Isobaric Cooling} & $100$ (WIM, H$_\alpha$)$^f$ & $2 \times 10^5$ & & $1.2 \times 10^4$& 3.9 & 1.4 & 0.05 & 0.5 & 5.3 \\ & $640$ (WNM, O{\sc i})$^g$ & $2 \times 10^5$ & & $1.5 \times 10^5$ & 25.8 & 9.1 & 0.3 & 3.6 & \\ \hline %&&&&&&&&& \\[-8pt] \multirow{2}*{Shock Models} & $5.7 \times 10^3$ & $4.5 \times 10^7$ & 5 & $1.8 \times 10^4$ & 13 & 27 & 0.3 & $10^{-5}$& \\ & $270$ & $5.6 \times 10^8$ & 20 & $3.7 \times 10^3$ & 0.04 & 25 & 0.01 & $5 \times 10^{-3}$& \\ \hline \end{tabular}} \medskip $^a$ All line fluxes are scaled to the aperture ${\cal A} = 11.3$~$\times$ $4.7$~arcsec$^{2}$. For isobaric cooling calculations, the pressure is set to the SQ~postshock gas value. For MHD~shock models, both contributions of the 2~shock velocities to the emission are indicated, as well as the pressure for the warm $\rm H_2$~phase in the shock. \\ $^b$ MHD Shock velocity. \\ $^c$ Cooling time computed down to 50~K. \\ $^d$ Sum of the $\rm H_2$ S(0) to S(5) rotational lines (from \citealt{2006ApJ...639L..51A}). \\ $^e$ From optical observations by \citet{2003ApJ...595..665X}. \\ $^f$ Mass flow derived from H$~ \alpha$ observations, ignoring ionization. It represents the isobaric cooling of the recombining H{\sc ii}~gas. \\ $^g$ Cooling mass flow derived from O{\sc i} observations and model calculations at the ambient SQ~pressure. This mass flow does not depend much on the pressure since the critical density of the O{\sc i}~line is high ($2$~$\times$~$10^6$~cm$^{-3}$). \end{table}