\begin{table}%t1 \caption{\label{tab:recipe-quantities}Quantities provided by the adjusted collision recipe.} %\centerline { \begin{tabular}{lp{88mm}ll} \hline\hline Symbol & Description & \multicolumn{2}{c}{Energy scaling parameters in \eq{energy-parameter}}\\ \cline{3-4} \\[-3.5mm] & & Global & Local \\ (1) & (2) & (3) & (4) \\ \hline $f_{\rm miss}$ & Fraction of collisions that resulted in a miss$^a$ & --- & -- \\ $N_{\rm f}$ & Mean number of large fragments & $N_{\rm tot}E_{\rm br}$ & $N_\mu E_{\rm br}$ \\ $S_{\rm f}$ & Standard deviation of the $N_{\rm f}$ & $N_{\rm tot}E_{\rm br}$ & $N_\mu E_{\rm br}$ \\ $f_{\rm pwl}$ & The fraction of the mass in the small fragments component. Normalized to $N_{\rm tot}$ (global recipe) or $N_\mu$ (local recipe). & $N_{\rm tot}E_{\rm br}$ & $N_\mu E_{\rm br}$ \\ $q$ & Exponent of the power-law distribution of small fragments & $N_{\rm tot}E_{\rm br}$ & $N_\mu E_{\rm br}$ \\ $C_\phi=\phi_\sigma/\phi_\sigma^{\rm ini}$ & Relative change of the geometrical filling factor.& $N_{\rm tot}E_{\rm roll}$ & $N_{\rm tot} E_{\rm roll}$ \\ \hline \end{tabular}} \par \smallskip {N{ote}: Columns (3)--(4) denote the energy scaling expressions used to obtain the dimensionless energy parameter, $\varepsilon$, see \eq{energy-parameter}. $^a$~Given as function of $a_{\rm out}/a_\sigma$ instead of $\phi_\sigma$, see \app{colltab}.} \end{table}