\begin{table}%t3 \par \caption {\label{tab:growth-table} Mass-weighted size of the distribution, $\langle a \rangle_{\rm m}$, at several distinct events during the simulation run. } %\centerline {\begin{tabular}{lllllll} \hline \hline & \multicolumn{6}{c}{$\langle a \rangle_{\rm m}$ [cm]} \\ \cline{2-7} \\[-3.5mm] Model & $10^4\ {\rm yr}$& $10^5\ {\rm yr}$& $10^6\ {\rm yr}$& $10^7\ {\rm yr}$ & $t_{\rm ff}(n)$ & $t_{\rm ad}(n)$ \\ (1) & (2) & (3) & (4) & (5) & (6) & (7)\\ \hline $n=10^3$, ice & {$1.0(-5)$} & {$1.0(-5)$} & {$1.2(-5)$} & {$8.3(-5)$} & {$1.2(-5)$} & {$8.3(-5)$} \\ $n=10^4$, silicates & {$1.0(-5)$} & {$1.1(-5)$} & {$1.4(-5)$} & {$1.4(-5)$} & {$1.2(-5)$} & {$1.4(-5)$} \\ $n=10^4$, ice & {$1.0(-5)$} & {$1.1(-5)$} & {$4.6(-5)$} & {$8.5(-4)$} & {$1.5(-5)$} & {$8.5(-4)$} \\ $n=10^5$, silicates & {$1.0(-5)$} & {$1.9(-5)$} & {$4.0(-5)$} & {$4.0(-5)$} & {$2.0(-5)$} & {$4.0(-5)$} \\ $n=10^5$, silicates, $a_0=10^{-4}$ & {$1.0(-4)$} & {$1.0(-4)$} & {$1.0(-4)$} & {$1.0(-4)$} & {$1.0(-4)$} & {$1.0(-4)$} \\ $n=10^5$, ice & {$1.0(-5)$} & {$2.2(-5)$} & {$6.4(-4)$} & {$7.4(-3)$} & {$2.3(-5)$} & {$3.2(-3)$} \\ $n=10^5$, ice, $a_0=10^{-4}$ & {$1.0(-4)$} & {$1.1(-4)$} & {$2.2(-4)$} & {$2.3(-4)$} & {$1.1(-4)$} & {$2.3(-4)$} \\ $n=10^5$, ice, $a_0=3\times10^{-6}$ & {$3.2(-6)$} & {$1.1(-5)$} & {$1.3(-3)$} & {$4.3$} & {$1.2(-5)$} & {$2.4(-1)$} \\ $n=10^5$, ice, compact & {$1.0(-5)$} & {$1.5(-5)$} & {$1.4(-4)$} & {$5.8(-3)$} & {$1.6(-5)$} & {$1.3(-3)$} \\ $n=10^5$, ice, head-on & {$1.0(-5)$} & {$2.2(-5)$} & {$3.6(-4)$} & {$7.5(-3)$} & {$2.4(-5)$} & {$3.1(-3)$} \\ $n=10^6$, silicates & {$1.4(-5)$} & {$1.2(-4)$} & {$1.3(-4)$} & {$1.3(-4)$} & {$4.4(-5)$} & {$1.3(-4)$} \\ $n=10^6$, ice & {$1.4(-5)$} & {$2.7(-4)$} & {$3.7(-2)$} & {$2.0(-2)$} & {$4.6(-5)$} & {$2.9(-2)$} \\ $n=10^7$, ice & {$7.9(-5)$} & {$3.7(-2)$} & {$5.2(-2)$} & {$6.1(-2)$} & {$8.6(-5)$} & {$7.8(-1)$} \\ \hline \end{tabular}} \par \smallskip \par {N{ote}: Column\ (1) lists the models in terms of the density ($n$) and material properties. The monomer size ($a_0$) is $0.1\ \micr$, unless otherwise indicated. Columns~(2)--(5) give the mass-weighted size of the distribution at fixed coagulation times. Likewise, Cols.~(6)--(7) provide $\langle a \rangle_{\rm m}$ at the free-fall and the ambipolar diffusion timescale of the cloud that corresponds to the gas density~$n$. These are a function of density and are given in \eq{tff} and \eq{tad}, respectively. Values $a\times10^b$ are denoted~$a(b)$.} \end{table}