\begin{table}%t3 \caption{\label{tb:parrota}Parity- and rotation-dependent inverse lifetimes for \coc{12}.} \small%\centerline $$ { \begin{tabular}{c r@{.}l r@{.}l c} \hline\hline &&& \\[-8pt] Band & \mc{$A_{\el{tot},f}{}^{a}$} & \mc{$A_{\el{tot},e}{}^{a}$} & Refs.$^{b}$ \\ \# & \mc{(\ps)} & \mc{(\ps)} & \\ \hline \phantom{0}8 & 3&6(11)+4.0(9)$x$ & 1&6(11)+1.3(10)$x$ & 1 \\ \phantom{$^{{c}}$}13$^{{c}}$ & 3&4(10)+7.3(10)$x$ & \mc{---} & 2 \\ 16 & 1&0(11)+1.8(9)$x$ & 1&0(11)+3.4(9)$x$ & 1 \\ 22 & 1&83(9) & 1&91(9)+1.20(9)$x$ & 3 \\ 25 & 1&2(10) & 1&2(10)+2.4(9)$x$ & 1 \\ \hline \end{tabular}}$$ \medskip $^{a}$~$x$ stands for $J'(J'+1)$; $^{b}$~(1) \citet{eidelsberg06a}; (2) \citet{ubachs94a}; (3) \citet{drabbels93b}; $^{c}$~this is a $^1\Sigma^+$ upper state, so there is no distinction between $e$ and $f$~parity. \end{table}