\begin{table}%t1 \caption{\label{tab1} Wavelengths, oscillator strengths, and broadening data for the two considered lines.} %\centerline {\small \begin{tabular}{llllll} \hline\hline\noalign{\smallskip} \multicolumn{6}{c}{$\rm 2s^2S$--$2{\rm p}^2{\rm P}^{\rm o}$}\\ \multicolumn{6}{c}{$^{(a)}\Gamma~=~3.690\times10^{7}$ \ \ \ $^{(b)}\sigma=346$ \ \ \ $^{(c)}\alpha=0.236$}\\\hline %\noalign{\smallskip} $\lambda$[nm] & $J_{\rm l}$ & $J_{\rm u}$& $f$ & $F_{\rm l}$ & $F_{\rm u}$ \\ \hline%\noalign{\smallskip} 670.79080 & 1/2 &1/2 & $1.037\times 10^{-2}$ &1 & 1 \\ 670.79066 & 1/2 &1/2 & $5.186\times 10^{-2}$ &1 & 2 \\ 670.79200 & 1/2 &1/2 & $3.112\times 10^{-2}$ &2 & 1 \\ 670.79187 & 1/2 &1/2 & $3.112\times 10^{-2}$ &2 & 2 \\ 670.77561 & 1/2 &3/2 & $1.245\times 10^{-1}$ &1 & 0,~1,~2 \\ 670.77682 & 1/2 &3/2 & $1.245\times 10^{-1}$ &2 & 1,~2,~3 \\ \hline \noalign{\smallskip} \multicolumn{6}{c}{$\rm 2p^2P^{o}$--$3{\rm d}^2D$}\\ \multicolumn{6}{c}{$^{(a)}\Gamma=1.055\times10^{8}$ \ \ \ $^{(b)}\sigma=837$ \ \ \ $^{(c)}\alpha=0.274$}\\ \hline\noalign{\smallskip} $\lambda$[nm] & $J_{\rm l}$ & $J_{\rm u}$& $f$ && \\ \hline\noalign{\smallskip} 610.3538 & 1/2 &3/2 & $6.386\times 10^{-1}$ & & \\ 610.3664 & 3/2 &3/2 & $6.386\times 10^{-2}$ & & \\ 610.3649 & 3/2 &5/2 & $5.747\times 10^{-1}$ & & \\ \hline \end{tabular}} \smallskip \par $^{(a)}$ $\Gamma$ $\rm[rad~s^{-1}]$ is the natural broadening parameter.\\ $^{(b)}$ $\sigma$ [a.u.~] is the broadening cross-section for collisions with neutral hydrogen at relative velocity $v=10^4~\rm m~s^{-1}$ \citep{Anstee95}. \\ $^{(c)}$ $\alpha$ is the velocity dependence of $\sigma$. \end{table}