\begin{table}%t4 \caption{\label{grid}Grid of solutions for 7 values of the mass ratio, $q$(=$M_2$/$M_1$), for HIP~96515~A.} \par \small%\centerline { { \begin{tabular}{lrrrrrrr} \hline \hline $q$ (=$M_2$/$M_1$)& 1.000 & 0.975 & 0.950 & 0.925 & 0.900 & 0.875 & 0.850 \\ \hline $V_1$ (km s$^{-1}$)& 82.70 & 81.65 & 80.60 & 79.48 & 78.35 & 77.19 & 75.99 \\ $V_2$ (km s$^{-1}$)& $-$82.70 & $-$83.75 & $-$84.82 & $-$85.92 & $-$87.05 & $-$88.21 & $-$89.40 \\ $V_{\gamma}$ (km s$^{-1}$)& 1.40 & 2.45 & 3.52 & 4.62 & 5.75 &6.91 & 8.10 \\ $K_{1}$ (km s$^{-1}$)& 83.46 & 82.41 & 81.32 & 80.21 & 79.07 & 77.90 & 76.69 \\ $K_{2}$ (km s$^{-1}$)& 83.46 & 84.51 & 85.60 & 86.71 & 87.85 & 89.02 & 90.23 \\ $M_{1}$ ($M_{\odot}$)& 0.56 & 0.57 & 0.58 & 0.59 & 0.59 & 0.60 & 0.61 \\ $R_{1}$ ($R_{\odot}$)& 0.64 & 0.65 & 0.65 & 0.64 & 0.64 & 0.64 & 0.64 \\ $\log g_1$ (cgs)& 4.57 & 4.57 & 4.58 & 4.59 & 4.60 & 4.60 & 4.61 \\ $M_{2}$ ($M_{\odot}$)& 0.56 & 0.56 & 0.55 & 0.54 & 0.53 & 0.53 & 0.52 \\ $R_{2}$ ($R_{\odot}$)& 0.53 & 0.53 & 0.53 & 0.54 & 0.55 & 0.52 & 0.52 \\ $\log g_2$ (cgs)& 4.74 & 4.74 & 4.73 & 4.71 & 4.69 & 4.72 & 4.72 \\ $a$ ($R_{\odot}$)& 7.73 & 7.73 & 7.73 & 7.73 & 7.73 & 7.73 & 7.73 \\ $\Delta m$ & 0.875 & 0.893 & 0.872 & 0.832 & 0.794 & 0.891 & 0.888 \\ $i$ ($^{\circ}$) & 89.27 & 89.45 & 89.28 & 89.08 & 89.00 & 89.51 & 89.62 \\ $d$ (pc)& 42 & 42 & 42 & 42 & 42 & 42 & 41 \\ \hline \end{tabular}}} \medskip $V_1$ and $V_2$ are the theoretical velocities for the primary and the secondary at the orbital phase $\phi$~= 0.7715. All the solutions have the reduced~$\chi^2$ the closest to 1~possible, for both data sets. \end{table}