\begin{table}%t3 \caption{\label{fitresults1}Listed are the best fit parameters deduced from our full spectral fitting.} \par %\centerline {\small \begin{tabular}{lrllllll} \hline \hline Name & $\chi^2$ & $T_{\rm dust1}$ & $T_{\rm dust2}$ & Fraction & $T_{\rm cont1}$ & $T_{\rm cont2}$ & Fraction \\ & & (K) & (K) & $T_{\rm dust1}$--$T_{\rm dust2}$ & (K) & (K) & $T_{\rm cont1}$--$T_{\rm cont2}$ \\ \hline EP~Lyr & 5.4 &$ 114_{\rm 14}^{ 122}$ &$ 228_{\rm 89}^{ 488}$ &$ 0.9_{\rm 0.6}^{ 0.1}- 0.1_{\rm 0.1}^{ 0.6}$ &$ 205_{\rm 103}^{ 702}$ &$ 641_{\rm 301}^{ 331}$ &$ 0.96_{\rm 0.06}^{ 0.02}- 0.04_{\rm 0.02}^{ 0.06}$\\ HD~52961 & 50.0 &$ 200_{\rm 0}^{ 10}$ &$ 724_{\rm 96}^{ 186}$ &$ 0.9_{\rm 0.1}^{ 0.0}- 0.1_{\rm 0.0}^{ 0.1}$ &$ 111_{\rm 11}^{ 356}$ &$ 996_{\rm 111}^{ 4}$ &$ 0.99_{\rm 0.03}^{ 0.00}- 0.01_{\rm 0.00}^{ 0.03}$\\ \end{tabular}} \par %\centerline {\small \begin{tabular}{lccccc} \hline Name & Olivine & Pyroxene & Forsterite & Enstatite & Continuum\\ & Small - Large & Small - Large & Small - Large & Small - Large &\\ \hline EP~Lyr &$ 6_{\rm 6}^{ 41}$--$5_{\rm 5}^{25}$ &$8_{\rm7}^{34}$--$6_{\rm6}^{23}$ &$\rm 34_{15}^{19}$--$\rm 9_{ 8}^{33}$ &$ 5_{\rm 5}^{20}$--$\rm 28_{21}^{17}$ &$\rm 53_{ 20}^{11}$\\ HD~52961 &$ 0_{\rm 0}^{ 13}$--$1_{\rm 1}^{41}$ &$\rm 55_{18}^{12}$--$\rm 2_{2}^{43}$ &$\rm 6_{5}^{18}$--$33_{\rm 18}^{13}$ &$\rm 1_{ 1}^{8}$--$\rm 3_{3}^{26}$ &$\rm 69_{4}^{4}$\\ \hline \end{tabular}} \par \medskip Note: Top part: The $\chi^2$, dust and continuum temperatures and their relative fractions. Bottom part: The abundances of small (0.1~$\mu$m) and large (2.0~$\mu$m) grains of the various dust species are given as fractions of the total mass, excluding the dust responsible for the continuum emission. The last column gives the continuum flux contribution, listed as a percentage of the total integrated flux over the full wavelength range. The errors were obtained using a Monte-Carlo simulation based on 100 equivalent spectra. Details of the modelling method are explained in \citet{gielen08}. \end{table}