\begin{table}%ta1 % \vspace*{1mm} \par %\centering \par \caption{\label{ssel} Variance of $\bar{s}$ and calculated centre (mean position) of cluster, when calculated from subsets of 200 points randomly selected from 1000 cluster members. } \begin{tabular}{lccc} \hline\hline Cluster type &$\bar{s}$ &$x$ &$y$ \\ \hline \multicolumn{3}{l}{{2D Uniform}}\\ 2D0 ($N \propto r^0$) & $.87\pm.03$ &$.01\pm0.03$ &$.03 \pm.03 $ \\[1mm] \multicolumn{3}{l}{{Radially clustered}}\\ 3D-2 ($n \propto r^{-2}$) & $.59\pm.02$ &$.006\pm.02 $ & $.010 \pm .02$\\ 3D-1 ($n \propto r^{-1}$) & $.73\pm.02$ &$.009 \pm.03 $ &$.007 \pm.02 $ \\ 3D0 ($n \propto r^0$) & $.79\pm.02$ &$.004\pm.03 $ & $.012 \pm .03$\\[1mm] \multicolumn{3}{l}{{Radially anticlustered}}\\ 3D05 ($n \propto r^{0.5}$) & $.82\pm.03$ &$.03\pm.03 $ & $.006 \pm.03$\\ 3D1 ($n \propto r^{1.0}$) & $.84\pm.03$ &$.02\pm.03 $ & $.008 \pm.03$\\ 3D15 ($n \propto r^{1.5}$) & $.85\pm.03$ &$.01\pm.03 $ & $.02 \pm.03$\\[1mm] \multicolumn{3}{l}{{Fractally clustered}}\\ F3.0 ($D = 3.0$) & $.79\pm.02$& $.01\pm.02$& $.003\pm.03$\\ F2.5 ($D = 2.5$) & $.75\pm.03$& $.18\pm.02$& $.15\pm.03$\\ F2.0 ($D = 2.0$) & $.63\pm.03$& $.08\pm.03$& $.08\pm.03$\\ F1.5 ($D = 1.5$) & $.67\pm.03$& $.09\pm.08$& $.14\pm.02$\\ \hline \end{tabular} \end{table}