\begin{table}%t4 \caption{\label{table:logitres}Logistic maximum likelihood estimates. } \small %\centerline { \begin{tabular}{cccc} \hline \hline Variable & $\hat{\beta}$& t-stat.& ${\cal{P}}$ \\ \hline $M_{\star}$ & 0.467 & 0.63 & 0.528 \\ ${\rm [Fe/H]}$ & 0.415 & 1.39 & 0.164 \\ $T_{\rm eff}$ & --0.517 & --0.81 & 0.417 \\ $R_{\star}$ & 0.059 & 0.12 & 0.901 \\ $P$ & --0.235 & --0.32 & 0.746 \\ $M_{\rm p}$ & 0.329 & 0.35 & 0.726 \\ $R_{\rm p}$ & 0.305 & 0.90 & 0.370 \\ $T_{\rm eq}$ & --0.296 & --0.46 & 0.648 \\ $\theta$ & --0.904 & --0.58 & 0.563 \\ \hline \end {tabular}} Maximum likelihood estimations.\\ Probability ${\cal{P}}_{\chi^2}= 0.756.$ \\ $\hat\beta$ is indicative of a correlation with $Y$; ``t-stat'' is the the distance in standard deviations from no correlation, and ${\cal{P}}$ represents the probability that the model and observations are not significantly different. \end{table}