\begin{table}%t1 \caption{\label{t1}Derived stellar parameters for \object{[OMN2000] LS1} as a function distance (Sects. 3.1 and 3.3).} %\centerline { \small\begin{tabular}{ccccccccccccc} \hline Distance & $R_{\ast}$ & $T_{\rm eff}$ & log($L_{\ast}/L_{\odot}$) & H/He & $v_{\infty}$ & $\beta$ & {\it f(r)} & $\dot M$ & $E$($B-V$) & $A_K$ & $M_K$ & M$_{\rm initial}$ \\ (kpc) & ($R_{\odot}$)& (kK) & & & (km~s$^{-1}$) & & & log($M_{\odot}$/yr) & & & & ($M_{\odot}$) \\ \hline 6 & 145.0 & 13.2 & 5.75 & 0.5 / 1.5 & 400 & 3.0 &0.08 & --4.2 / --4.6 &3.5 & 1.2 &--8.90 & $\sim$40\\ 3.4& 82.5 & 13.4 & 5.30 & 0.5 / 1.5 & 400 & 3.0 &0.08 & --4.6 / --5.0 & 3.5 & 1.2 &--7.65 & $\sim$25\\ 2 & 48.0 & 13.7 & 4.86 & 0.5 / 1.5 & 400 & 3.0 &0.08 & --4.9 / --5.3 &3.5 & 1.2 &--6.50& $\sim$17\\ \hline \end{tabular}} \medskip \par {As described in Sect. 3.2, H/He ratios suffer from a modest degeneracy, resulting in a reduction in the mass loss rate by $\sim$60\% for the H/He~=~1.5 model compared to H/He~=~0.5. We further estimate systematic uncertainties of $\pm$50~km~s$^{-1}$ in $v_{\infty}$, $\pm$300~K in $T_{\rm eff}$ and $\pm$0.1~dex in log($L_{\ast}/L_{\odot}$).} \end{table}