\begin{table}%t6 \caption{\label{tab:table6}Values of the coefficients of the adjusted harmonic functions$^{a}$.} \par \small%\centerline { \begin{tabular}{llcccc} \hline \hline Solution & Offset & $Hp(R')$ & $Ln(\sin \delta)$ & $Fml(\alpha)$ & Coefficient \\ \hline BU6 & $\Delta\alpha\cos\delta$ & 0 & 0 & 1~~~$-$1 & $+$18.7 $\pm$ 5.5 \\ BU6 & $\Delta\alpha\cos\delta$ & 0 & 0 & 1~~~$+$1 & $+$41.7 $\pm$ 5.2 \\ BU6 & $\Delta\alpha\cos\delta$ & 0 & 4 & 0~~~~0 & $-$21.0 $\pm$ 6.0 \\ BU6 & $\Delta\alpha\cos\delta$ & 1 & 0 & 0~~~~0 & $-$~5.5 $\pm$ 2.7 \\ BU6 & $\Delta\alpha\cos\delta$ & 1 & 3 & 0~~~~0 & $+$13.1 $\pm$ 2.9 \\ BU6 & $\Delta\alpha\cos\delta$ & 1 & 4 & 1~~~$-$1 & $+$~8.9 $\pm$ 2.8 \\ BU6 & $\Delta\delta$ & 0 & 8 & 3~~~$+$1 & $-$20.2 $\pm$ 6.0 \\ \\ BN6 & $\Delta\alpha\cos\delta$ & -- & -- & -- & -- \\ BN6 & $\Delta\delta$ & -- & -- & -- & -- \\ \\ BT6 & $\Delta\alpha\cos\delta$ & 0 & 0 & 1~~~$-$1 & $+$16.6 $\pm$ 4.7 \\ BT6 & $\Delta\alpha\cos\delta$ & 0 & 0 & 1~~~$+$1 & $+$38.0 $\pm$ 4.2 \\ BT6 & $\Delta\alpha\cos\delta$ & 0 & 3 & 1~~~$+$1 & $+$12.3 $\pm$ 4.4 \\ BT6 & $\Delta\alpha\cos\delta$ & 0 & 4 & 0~~~~0 & $-$15.1 $\pm$ 4.6 \\ BT6 & $\Delta\alpha\cos\delta$ & 0 & 4 & 4~~~$-$1 & $-$18.2 $\pm$ 4.5 \\ BT6 & $\Delta\alpha\cos\delta$ & 1 & 0 & 0~~~~0 & $-$~8.7 $\pm$ 2.1 \\ BT6 & $\Delta\alpha\cos\delta$ & 1 & 3 & 0~~~~0 & $+$~7.5 $\pm$ 2.1 \\ BT6 & $\Delta\alpha\cos\delta$ & 1 & 5 & 0~~~~0 & $-$~7.0 $\pm$ 2.1 \\ BT6 & $\Delta\alpha\cos\delta$ & 1 & 5 & 1~~~$+$1 & $+$~7.2 $\pm$ 2.2 \\ BT6 & $\Delta\delta$ & 0 & 6 & 1~~~$-$1 & $+$14.9 $\pm$ 4.8 \\ BT6 & $\Delta\delta$ & 0 & 8 & 3~~~$+$1 & $-$17.3 $\pm$ 4.5 \\ BT6 & $\Delta\delta$ & 0 & 9 & 6~~~$+$1 & $-$14.2 $\pm$ 4.6 \\ BT6 & $\Delta\delta$ & 1 & 3 & 1~~~$+$1 & $+$~6.9 $\pm$ 2.0 \\ BT6 & $\Delta\delta$ & 1 & 3 & 3~~~$-$1 & $+$~7.2 $\pm$ 2.1 \\ \\ GU6 & $\Delta\alpha\cos\delta$ & 0 & 0 & 1~~~$+$ & $+$18.0 $\pm$ 4.7 \\ GU6 & $\Delta\alpha\cos\delta$ & 0 & 1 & 0~~~~0 & $+$64.2 $\pm$ 9.0 \\ GU6 & $\Delta\alpha\cos\delta$ & 0 & 3 & 0~~~~0 & $-$36.3 $\pm$ 8.5 \\ GU6 & $\Delta\alpha\cos\delta$ & 0 & 5 & 0~~~~0 & $+$22.0 $\pm$ 6.1 \\ GU6 & $\Delta\alpha\cos\delta$ & 0 & 9 & 0~~~~0 & $+$19.9 $\pm$ 5.4 \\ GU6 & $\Delta\alpha\cos\delta$ & 1 & 0 & 1~~~$+$ & $-$~7.1 $\pm$ 2.4 \\ GU6 & $\Delta\delta$ & 0 & 1 & 0~~~~0 & $-$23.0 $\pm$ 6.1 \\ GU6 & $\Delta\delta$ & 0 & 2 & 4~~~$+$1 & $-$18.6 $\pm$ 5.7 \\ GU6 & $\Delta\delta$ & 1 & 0 & 0~~~~0 & $+$~7.3 $\pm$ 2.3 \\ \\ GN6 & $\Delta\alpha\cos\delta$ & -- & -- & -- & -- \\ GN6 & $\Delta\delta$ & 0 & 0 & 9~~~$-$1 & $-$33.9 $\pm$ 1,1 \\ \\ GT6 & $\Delta\alpha\cos\delta$ & 0 & 0 & 1~~~$+$1 & $+$22.4 $\pm$ 4.0 \\ GT6 & $\Delta\alpha\cos\delta$ & 0 & 1 & 0~~~~0 & $+$26.0 $\pm$ 4.6 \\ GT6 & $\Delta\alpha\cos\delta$ & 0 & 3 & 0~~~~0 & $-$21.0 $\pm$ 4.4 \\ GT6 & $\Delta\alpha\cos\delta$ & 1 & 1 & 1~~~$-$1 & $-$~7.9 $\pm$ 2.2 \\ GT6 & $\Delta\delta$ & 1 & 0 & 0~~~~0 & $+$~6.8 $\pm$ 2.1 \\ GT6 & $\Delta\delta$ & 1 & 2 & 4~~~$+$1 & $+$~7.0 $\pm$ 2.1 \\ \\ DU6 & $\Delta\alpha\cos\delta$ & -- & -- & -- & -- \\ DU6 & $\Delta\delta$ & -- & -- & -- & -- \\ \\ DN6 & $\Delta\alpha\cos\delta$ & -- & -- & -- & -- \\ DN6 & $\Delta\delta$ & -- & -- & -- & -- \\ \\ DT6 & $\Delta\alpha\cos\delta$ & 0 & 4 & 0~~~~0 & $-$14.8 $\pm$ 3.8 \\ DT6 & $\Delta\delta$ & -- & -- & -- & -- \\ \\ \hline \end{tabular}} \medskip $^{a}$ As the results from the six-parameter and four-constants local astrometreic solutions are quite alike, only the results from the six-parameter solutions are displayed. The code for the solutions are as in the previous tables and the coefficients are in milli-arcsec. \end{table}