\begin{table}%t1 \caption{Parameters for the asymptotic formula Eq.~(\ref{eq:asymptotic}).} \label{tab:asymptotic} %\centerline { \begin{tabular}{*{11}{c}} \hline \hline\noalign{\smallskip} $\displaystyle \frac{M}{M_{\odot}}$ & $\eta$ & $\alpha$ & $N_{{\rm modes}}$ & $\begin{array}{c} \displaystyle \Delta_{\tilde{n}} \\ (\mu{\rm Hz}) \end{array}$ & $\displaystyle \frac{\Delta_{\tilde{\l}}}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\Delta_{\tilde{m}}}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\tilde{\alpha}}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\Omega_{{\rm fit}}}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\Omega_{{\rm real}}}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\left< \delta \omega^2 \right>^{1/2}}{\Delta_{\tilde{n}}}$ \\ \noalign{\smallskip}\hline\noalign{\smallskip} poly$^{\star}$ & 0.6 & 0.0 & 84 & 36.7 & 0.66 & 0.029 & 2.92 & 0.827 & 0.838 & 0.047 \\ 1.7 & 0.7 & 0.0 & 40 & 37.1 & 0.77 & 0.018 & 3.52 & 0.975 & 0.982 & 0.023 \\ 1.8 & 0.9 & 0.0 & 11 & 33.5 & 0.42 & 0.011 & 2.86 & 1.157 & 1.167 & 0.038 \\ 25.0 & 0.6 & 0.0 & 39 & 15.2 & 0.79 & 0.016 & 3.39 & 0.947 & 0.969 & 0.030 \\ 25.0 & 0.6 & 0.2 & 31 & 15.1 & 0.85 & 0.018 & 3.63 & 0.944 & 0.947-0.987 & 0.045 \\ 25.0 & 0.6 & 0.4 & 31 & 15.5 & 0.90 & 0.050 & 3.37 & 0.915 & 0.830-0.988 & 0.059 \\ 25.0 & 0.9 & 0.0 & 24 & 12.4 & 0.70 &-0.002 & 3.41 & 1.380 & 1.387 & 0.033 \\ \hline \end{tabular}} \medskip \par Values of the different parameters from Eq.~(\ref{eq:asymptotic}) for selected SCF models as well as for a polytropic model (first line). The first three columns identify the model, where $\eta$ and $\alpha$ come from Eq.~(\ref{eq:rotation}). The parameters (Cols. 5--9) were based on a sparse mode set (the number of modes being indicated by $N_{{\rm mode}}$) and are therefore subject to error. The last column contains the average deviation between asymptotic frequencies based on Eq.~(\ref{eq:asymptotic}) and the numerical frequencies.\\ $^\star$ Polytropic model with $N = 3$, $M = 1.7~M_{\odot}$ and $\Req = 1.84~R_{\odot}$. These are also the mass and equatorial radius of the model on the next line. \end{table}