\begin{table}%T12 \par \caption{\label{table_HD49933_posterior_individual_Amplitude_M2A}Energy posterior estimates for HD~49933, model $M^2_{\rm A}$. $n$ is given for the $l=0$~modes.} \small%\centering \par \begin{tabular}{c|c c c} \hline\hline & \multicolumn{3}{c}{Model $M^2_{\rm A}$ (ppm)}\\ $n$ & $ median $ & $ 1 \sigma_+/1 \sigma_- $ & $ 2 \sigma_+/2 \sigma_- $\\ \hline 13 & $3.16$ & 0.51 / 0.48 & 1.01 / 0.94\\ 14 & $2.29$ & 0.39 / 0.36 & 0.79 / 0.73\\ 15 & $2.83$ & 0.30 / 0.30 & 0.63 / 0.59\\ 16 & $2.98$ & 0.40 / 0.41 & 0.79 / 0.80\\ 17 & $3.63$ & 0.34 / 0.34 & 0.68 / 0.69\\ 18 & $3.83$ & 0.33 / 0.33 & 0.67 / 0.66\\ 19 & $4.48$ & 0.34 / 0.34 & 0.68 / 0.68\\ 20 & $3.55$ & 0.31 / 0.30 & 0.63 / 0.62\\ 21 & $3.18$ & 0.31 / 0.31 & 0.62 / 0.63\\ 22 & $3.18$ & 0.30 / 0.30 & 0.62 / 0.58\\ 23 & $2.81$ & 0.29 / 0.29 & 0.59 / 0.59\\ 24 & $2.53$ & 0.30 / 0.30 & 0.61 / 0.60\\ 25 & $2.65$ & 0.30 / 0.29 & 0.60 / 0.59\\ 26 & $2.32$ & 0.28 / 0.28 & 0.57 / 0.56\\ 27 & $1.79$ & 0.34 / 0.32 & 0.69 / 0.62\\\hline \end{tabular} \end{table}