\begin{table}%t2 \caption{\label{table_simu_prior}Priors used for the analysis of the simulated spectra for the inclination angle $i$, the rotational splitting $\nu_{\rm s}$, the large separation $\Delta\nu$ (Eq.~(\ref{Assymptotic_relation})) and the small separation $\langle \delta\nu_{02}\rangle_{\rm th}$ (Eq.~(\ref{prior_l=2})). } \small%\centerline { \begin{tabular}{ccccc} \hline \hline & $i$ & $\nu_{\rm s}$ & $\Delta\nu$ & $\langle \delta \nu_{02}\rangle_{\rm th}$ \\ \hline 1 & $[0{-}90]$ & $2 \pm 0.2$ & $90.2 \pm 0.5$ & $8 \pm 4$ \\ 2 & $[0{-}90]$ & $2 \pm 0.2$ & $89.9 \pm 0.6$ & $8 \pm 4$ \\ 3 & $[0{-}90]$ & $3.5 \pm 0.35$ & $90.2 \pm 0.6$ & $8 \pm 4$ \\ 4 & $[0{-}90]$ & $3.5 \pm 0.35$ & $90.0 \pm 0.3$ & $5 \pm 2.5$ \\ 5 & $[0{-}90]$ & $3.5 \pm 0.35$ & $90.0 \pm 0.4$ & $6 \pm 3$ \\ 6 & $[0{-}90]$ & $3.5 \pm 0.35$ & $90.1 \pm 0.5$ & $6 \pm 3$ \\ \hline \end{tabular}} \smallskip The prior on $i$ is uniform and Gaussian for the other parameters (with the indicated~$\sigma$~width). Priors on mode frequencies are also Gaussian with a 6~$\mu$Hz width. \end{table}