\begin{table}%T3 \par \caption{\label{table_simu_posterior}{\it Top}: model odds ratio $O_{M_{\rm A},M_{\rm B}}$ for scenario 1 to 5 (which include $l=2$~modes). Bottom: odds ratio for scenario 6, comparing 4 models (identifications A and B, with or without $l=2$). } \small%\centerline { \begin{tabular}{c|c} \hline \hline Scenario & $O_{M_{\rm A},M_{\rm B}}$ \\ \hline 1 & $2 \times 10^{48}$ \\ 2 & $7 \times 10^{26}$\\ 3 & $1.5 \times 10^4$\\ 4 & $7.209$\\ 5 & $1.578$ \\ \hline \end{tabular}} \smallskip \par \small%\centerline { \begin{tabular}{c|cccc|c} \hline \hline \multicolumn{6}{c}{Scenario 6} \\ \hline $M^l_k \backslash M^{l'}_{k'}$ & $M^1_{\rm A} $ & $M^1_{\rm B} $ & $M^2_{\rm A} $ & $M^2_{\rm B} $ & $P_{\rm R}(M^l_k|y,I)$ \\ \hline $M^1_{\rm A}$ & $1$ & $4.6104$ & $92.6707$ & $2.9385$ & $64 \%$\\ $M^1_{\rm B}$ & $0.2169$ & $1$ & $20.1003$ & $0.6374$ & $13\%$\\ $M^2_{\rm A}$ & $0.0317$ & $0.0495$ & $1$ & $0.0108$ & $1\%$\\ $M^2_{\rm B}$ & $0.3403$ & $1.5690$ & $31.5373$ & $1$ & $22\%$\\ \hline \end{tabular}} \smallskip The identification is indicated as the subscript of the model, the highest $l$~modes as the exponent. Scenario~6 {\em does not include} $l=2$~modes and thus the correct model is $M^1_{\rm A}$. The values of the matrix represent the odds ratio. Note the correct model only reaches a probability of 64\%. \end{table}