\begin{table}%T4 \caption{\label{tableHD49933prior}Priors used for HD~49933 data analysis. $\nu_{\rm s}$ is the rotational splitting, $i$ the star inclination angle, $\delta\nu_{02}$ the small frequency separation, $\Delta\nu$ the large separation. The value of $\epsilon$ and $D_0$ depend on the model and set the position of the first prior frequency (see Eq.~(\ref{Assymptotic_relation})).} \par \small%\centerline { \begin{tabular}{cccc} \hline\hline Parameter & Prior nature & Values \\ \hline $\nu_{\rm s}$ & Gaussian & $3.4\pm0.34$ $\mu {\rm{Hz}}$ \\ $i$ & Uniform & $[0^\circ{-}90^\circ]$ \\ $\delta \nu_{02}$ & Gaussian & $6 \pm 3$~$\mu {\rm{Hz}}$\\ $\Delta\nu$ & Gaussian & $85.6 \pm 0.8$~$\mu {\rm{Hz}}$\\ $\epsilon$ & Fixed & 1.55 ($M_{\rm A}$) / 1.05 ($M_{\rm B}$)\\ $D_0$ & Fixed & 1 $\mu {\rm{Hz}}$\\ \hline \end{tabular}} %\centerline { \begin{tabular}{cccc} Parameter & Prior nature & $x_{\rm min}$ & $x_{\rm max}$ \\ \hline\noalign{\smallskip} $h$ (ppm$^2$/$ \mu Hz)$ & Jeffrey & 1 & 10 \\ $V_{l=1}$ & Jeffrey & 1.5 & 5 \\ $V_{l=2}$ & Jeffrey & 0.5 & 5 \\ $\Gamma$ $(\mu {\rm{Hz}})$ & Jeffrey & 5 & 25 \\ \hline \end{tabular}} \smallskip $\nu_{\rm s}$ is the rotational splitting, $i$ the star inclination angle, $\delta\nu_{02}$ the small frequency separation, $\Delta\nu$ the large separation. The value of $\epsilon$ and $D_0$ depend on the model and set the position of the first prior frequency (see Eq.~(\ref{Assymptotic_relation})). \end{table}