\begin{table}%T6 \par \caption{\label{table_HD49933_posterior_individual_Frequency}HD~49933 frequencies and height-to-noise posterior estimates for $l=0$ and $l=1$~modes for the $M^1_{\rm A}$~model.} %$n$ order is given supposing $\epsilon\in[1,2]$. $H/N$ represents the height-to-noise ratio in the power spectrum.} \small%\centerline { \begin{tabular}{cc | c c c | c} \hline\hline & & \multicolumn{4}{c}{Model $M^1_{\rm A}$} \\ \hline & & \multicolumn{3}{c|}{$\nu$ ($\mu {\rm{Hz}}$)} & $H/N$ \\ $l$ & $n$ & $median$ & $ 1 \sigma_+ 1 \sigma_- $ & $ 2 \sigma_+ 2 \sigma_- $ & \\ \hline 0 & 13 & $1244.56$& 1.37 / 1.04& 3.96 / 2.31 &1.3 \\ 0 & 14 & $1329.15$& 1.26 / 1.08& 4.10 / 2.30 &1.3\\ 0 & 15 & $1415.50$& 0.50 / 0.54& 1.00 / 1.34 &4.2\\ 0 & 16 & $1501.20$& 0.85 / 1.03 & 1.95 / 2.52 &1.5\\ 0 & 17 & $1586.20$& 0.59 / 0.63& 1.19 / 1.36 &4.1\\ 0 & 18 & $1670.14$& 0.79 / 0.84& 1.64 / 1.93 &3.1\\ 0 & 19 & $1756.57$& 0.78 / 0.77& 1.61 / 1.61 &3.3\\ 0 & 20 & $1840.47$& 0.79 / 0.79& 1.60 / 1.60 &3.8\\ 0 & 21 & $1927.26$& 1.49 / 1.46& 3.06 / 2.92 &1.7\\ 0 & 22 & $2013.71$& 0.97 / 0.89& 2.15 / 1.86 &2.2\\ 0 & 23 & $2101.84$& 1.69 / 1.64& 3.63 / 3.46 &1.3\\ 0 & 24 & $2189.24$& 2.34 / 2.30& 4.34 / 4.27 &1.1\\ 0 & 25 & $2278.71$& 1.13 / 1.45& 2.27 / 3.37 &1.3\\ 0 & 26 & $2361.91$& 2.19 / 2.27& 4.54 / 4.41 &1.0\\ 0 & 27 & $2448.88$& 1.41 / 1.68& 4.70 / 6.05 &0.9\\ 1 & 13 & $1290.06$& 1.94 / 1.89& 3.87 / 3.87 &1.3\\ 1 & 14 & $1371.87$& 1.34 / 1.88& 3.40 / 3.99 &1.4\\ 1 & 15 & $1458.18$& 0.40 / 0.46& 0.89 / 1.75 &4.3\\ 1 & 16 & $1543.20$& 1.82 / 2.38& 3.49 / 5.00 &1.6\\ 1 & 17 & $1629.99$& 0.83 / 0.74& 1.90 / 1.62 &4.1\\ 1 & 18 & $1714.72$& 0.96 / 0.84& 2.02 / 1.69 &3.2\\ 1 & 19 & $1800.15$& 1.11 / 1.08& 2.24 / 2.26 &3.4\\ 1 & 20 & $1884.80$& 0.80 / 0.79& 1.58 / 1.61 &3.8\\ 1 & 21 & $1972.12$& 1.30 / 1.45& 2.59 / 2.98 &1.7\\ 1 & 22 & $2059.06$& 1.27 / 1.18& 2.72 / 2.60 &2.2\\ 1 & 23 & $2145.12$& 1.60 / 1.56& 3.28 / 3.32 &1.3\\ 1 & 24 & $2233.68$& 1.95 / 1.80& 4.04 / 3.82 &1.1\\ 1 & 25 & $2321.00$& 2.67 / 2.67& 5.14 / 6.37 &1.3\\ 1 & 26 & $2403.19$& 1.81 / 2.02& 3.67 / 4.65 &1.0\\ 1 & 27 & $2495.09$& 2.25 / 1.83& 4.79 / 5.21 &0.9\\ \hline \end{tabular}} \smallskip $n$ order is given supposing $\epsilon\in[1,2]$. $H/N$ represents the height-to-noise ratio in the power spectrum. \end{table}