\begin{table}%t3 \caption{\label{error}Error sources for the abundances of the chemical elements in HD~49933.} %\centerline {\small \begin{tabular}{lrrrrrr} \hline \hline \multicolumn{1}{c}{Ion} & \multicolumn{1}{c}{abundance}&\multicolumn{1}{c}{$\sigma_{\rm abn}$~(scatt.)} & \multicolumn{1}{c}{$\sigma_{\rm abn}$~(\Teff) } & \multicolumn{1}{c}{$\sigma_{\rm abn}$~(\logg) } & \multicolumn{1}{c}{$\sigma_{\rm abn}$~(\vmic) } & %6 \multicolumn{1}{c}{$\sigma_{\rm abn}$~(tot) } \\ %7 \multicolumn{1}{c}{ } & %1 \multicolumn{1}{c}{$\log (N/N_{\rm tot})$} & %2 \multicolumn{1}{c}{(dex) } & %3 \multicolumn{1}{c}{(dex) } & %4 \multicolumn{1}{c}{(dex) } & %5 \multicolumn{1}{c}{(dex) } & %6 \multicolumn{1}{c}{(dex) } \\\\[-3mm] %7 \hline\\[-3mm] \ion{C}{i} & $-$3.74 & 0.10 & $-$0.02 & $ $0.05 & $ $0.00 & 0.11 \\ \ion{O}{i} & $-$3.55 & & $-$0.03 & $ $0.05 & $ $0.00 & 0.12 \\ \ion{Na}{i} & $-$6.15 & 0.05 & $ $0.02 & $ $0.00 & $-$0.01 & 0.05 \\ \ion{Mg}{i} & $-$4.83 & 0.07 & $ $0.03 & $-$0.01 & $-$0.02 & 0.08 \\ \ion{Mg}{ii} & $-$4.73 & & $-$0.02 & $ $0.05 & $-$0.01 & 0.11 \\ \ion{Al}{i} & $-$6.20 & & $ $0.02 & $ $0.00 & $ $0.00 & 0.10 \\ \ion{Si}{i} & $-$4.86 & 0.21 & $ $0.01 & $ $0.00 & $-$0.01 & 0.21 \\ \ion{Si}{ii} & $-$4.82 & 0.02 & $-$0.03 & $ $0.05 & $-$0.02 & 0.07 \\ \ion{S}{i} & $-$5.23 & 0.07 & $-$0.01 & $ $0.04 & $ $0.00 & 0.08 \\ \ion{Ca}{i} & $-$6.01 & 0.11 & $ $0.03 & $-$0.01 & $-$0.05 & 0.12 \\ \ion{Ca}{ii} & $-$6.01 & 0.09 & $-$0.02 & $ $0.05 & $-$0.01 & 0.11 \\ \ion{Sc}{ii} & $-$9.24 & 0.12 & $ $0.02 & $ $0.05 & $-$0.05 & 0.14 \\ \ion{Ti}{i} & $-$7.54 & 0.07 & $ $0.03 & $ $0.00 & $-$0.02 & 0.08 \\ \ion{Ti}{ii} & $-$7.42 & 0.12 & $ $0.01 & $ $0.05 & $-$0.05 & 0.16 \\ \ion{V}{i} & $-$8.50 & 0.13 & $ $0.04 & $ $0.00 & $-$0.01 & 0.15 \\ \ion{V}{ii} & $-$8.47 & 0.23 & $ $0.01 & $ $0.05 & $-$0.01 & 0.15 \\ \ion{Cr}{i} & $-$6.82 & 0.17 & $ $0.04 & $ $0.00 & $-$0.02 & 0.18 \\ \ion{Cr}{ii} & $-$6.61 & 0.17 & $ $0.00 & $ $0.05 & $-$0.03 & 0.19 \\ \ion{Mn}{i} & $-$7.33 & 0.14 & $ $0.03 & $ $0.00 & $-$0.03 & 0.15 \\ \ion{Fe}{i} & $-$5.04 & 0.06 & $ $0.04 & $-$0.01 & $-$0.04 & 0.13 \\ \ion{Fe}{ii} & $-$5.03 & 0.08 & $ $0.01 & $ $0.05 & $-$0.05 & 0.12 \\ \ion{Co}{i} & $-$7.49 & 0.10 & $ $0.03 & $ $0.00 & $ $0.00 & 0.10 \\ \ion{Ni}{i} & $-$6.34 & 0.10 & $ $0.03 & $ $0.00 & $-$0.02 & 0.11 \\ \ion{Cu}{i} & $-$8.65 & 0.07 & $ $0.03 & $ $0.00 & $-$0.01 & 0.08 \\ \ion{Zn}{i} & $-$8.12 & 0.06 & $ $0.02 & $ $0.01 & $-$0.04 & 0.08 \\ \ion{Sr}{i} & $-$9.65 & & $ $0.03 & $ $0.00 & $ $0.00 & 0.10 \\ \ion{Sr}{ii} & $-$9.50 & 0.04 & $ $0.01 & $ $0.06 & $-$0.01 & 0.07 \\ \ion{Y}{ii} & $-$10.34& 0.10 & $ $0.02 & $ $0.05 & $-$0.02 & 0.12 \\ \ion{Zr}{ii} & $-$9.85 & 0.06 & $ $0.01 & $ $0.05 & $-$0.01 & 0.08 \\ \ion{Ba}{ii} & $-$10.06& 0.19 & $ $0.03 & $ $0.02 & $-$0.07 & 0.16 \\ \ion{La}{ii} & $-$11.21& 0.11 & $ $0.03 & $ $0.06 & $ $0.00 & 0.14 \\ \ion{Ce}{ii} & $-$10.73& 0.10 & $ $0.03 & $ $0.05 & $ $0.00 & 0.12 \\ \ion{Nd}{ii} & $-$10.77& 0.28 & $ $0.02 & $ $0.05 & $-$0.01 & 0.28 \\ \ion{Sm}{ii} & $-$11.09& 0.16 & $ $0.03 & $ $0.05 & $ $0.00 & 0.17 \\ \ion{Eu}{ii} & $-$11.92& 0.10 & $ $0.03 & $ $0.05 & $ $0.00 & 0.12 \\ \ion{Gd}{ii} & $-$11.16& 0.09 & $ $0.03 & $ $0.05 & $ $0.00 & 0.15 \\ \ion{Dy}{ii} & $-$11.36& 0.15 & $ $0.03 & $ $0.05 & $ $0.00 & 0.16 \\ \hline \end{tabular}} \medskip Column~3 gives the standard deviation $\sigma_{\rm abn}$ (scatt.) of the mean abundance obtained from different spectral lines (internal scatter); a blank means that the number of spectral lines is $<$2, hence no internal scatter could be estimated. (Note that these values are identical to those given in Table~\ref{abundance}). Columns~4--6 give the variation in abundance estimated by increasing \Teff\ by 50~K, \logg\ by 0.15~dex, and \vmic\ by 0.2~km~s$^{-1}$, respectively. Column~7 gives the the mean error calculated applying standard error propagation theory on the uncertainties given in the previous columns, i.e., $\sigma_{\rm abn}^2$~(tot) = $\sigma_{\rm abn}^2$~(scatt.) + $\sigma_{\rm abn}^2$~(\Teff) + $\sigma_{\rm abn}^2$~(\logg) + $\sigma_{\rm abn}^2$~(\vmic). For the computation of $\sigma_{\rm abn}^2$~(tot) of those ions for which the internal scatter could not be measured, we have assumed a~priori $\sigma_{\rm abn}~{\rm (scatt.)} = 0.10$~dex. \end{table}