\begin{table}%t2 \caption{\label{tab:bounds}Bounds to parameter space and solutions.} %\centerline {\small \begin{tabular}{cccccc} \hline \hline\noalign{\smallskip} Case(s) & $\begin{array}{c} \Delta_{\tilde{n}} \\ \mbox{(in $\mu$Hz)} \end{array}$ & $\displaystyle \frac{\Delta_{\tilde{\l}}}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\Delta_{\tilde{m}}}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\Omega}{\Delta_{\tilde{n}}}$ & $\displaystyle \frac{\alpha}{\Delta_{\tilde{n}}}$ \\ \noalign{\smallskip}\hline\noalign{\smallskip} \multicolumn{6}{c}{Bounds to parameter space} \\ %\hline 1 & 11.5--19.2 & 0.5--0.9 & 0.01--0.05 & 0.6--1.0 & 2.5--3.5 \\ 2,3 & 9.6--19.2 & 0.5--0.9 & 0.00--0.05 & 0.8--1.2 & 2.8--3.8 \\ 4,5 & 9.6--19.2 & 0.5--0.9 & 0.00--0.05 & 0.8--1.2 & 1.0--2.0 \\ \hline\noalign{\smallskip} \multicolumn{6}{c}{Solutions} \\ %\hline 1$^\star$ & 17.26 & 0.660 & 0.0288 & 0.827 & 2.92 \\ 2 & 15.25 & 0.767 & 0.0205 & 0.955 & 3.35 \\ 4 & 16.01 & 0.755 & 0.0076 & 0.919 & 1.64 \\ 5 & 16.01 & 0.758 & 0.0074 & 0.921 & 1.65 \\ \hline \end{tabular}} \medskip Bounds of the parameter space used in the mode identification scheme and corresponding exact solutions. These bounds were chosen so as to include the solutions. $^\star$ These parameters correspond to a polytropic model with a polytropic index of~3 and the same mass and equatorial radius as the model used in cases~2, 4 and~5 (\ie\ $M = 25 M_{\odot}$ and $R_{{\rm eq}} = 7.46~R_{\odot}$). %\vspace*{-3mm} \end{table}