\begin{table}%t3 \caption{\label{tab3}Microscopic diffusion and radiative acceleration effects on the large frequency separation, $\nu_{\ell=0,n=14}$ and $\nu_{\ell=0,n=27}$.} \par \small%\centerline { \begin{tabular}{p{0.17\linewidth}llllllc} \hline\hline $M/M_{\odot} $ & $T_{\rm eff}$ & $Z/X$ & $\Delta \nu$ & $\nu_{\ell=0,n=14}$ & $\nu_{\ell=0,n=27}$ & Model \\ & {[K]} & & {[$\mu$Hz]} & {[$\mu$Hz]} & {[$\mu$Hz]} & \\ \hline &&&&&& \\[-8pt] 1.35 & 6668 & 4.1 $\times$ $10^{-3}$ & 94.0 & 1401 & 2627 & 6 \\ 1.3 & 6480 & 4.2 $\times$ $10^{-3}$ & 85.7 & 1280 & 2401 & 7 \\ 1.25 & 6151 & 1.15 $\times$ $10^{-2}$ & 76.3 & 1216 & 2209 & 8 \\ \hline \end{tabular}} \medskip Note 1. The models all have the same initial composition ($X=0.7195$, $Y=0.2664$ and thus $Z/X=1.959$~$\times$ $10^{-2}$) and are stopped at the same luminosity ($\log L/L_{\odot}=0.53$). Then the ages of the~1.25, 1.3 and 1.35~$M_{\odot}$ models are respectively 3.32, 1.79 and 0.54~Gyr. \end{table}