\begin{table}%t7 \caption {\label{discri}The bestfit solutions of the spectroscopic mode identification for the mode with frequency $8.4079$~d$^{-1}$ determined by the adapted \mbox{discriminant $\Sigma$}, based on the definition in Aerts\ (\cite{aerts96}). } %\centerline {\begin{tabular}{ccccccc} \hline \hline ($\ell,|m|$) & $i$ & $v\sin i$ & $A_{\rm p}$ & $v_{\rm r,max}$ & $v_{\rm t,max}$ & $\Sigma$ \\ \hline (3,2) & 81.5 & 38.5 & 77.35 & 30.4 & 3.0 & 0.93 \\ (3,1) & 30.5 & 39.5 & 25.69 & 11.4 & 1.3 & 4.13 \\ (1,1) & 14.5 & 29.9 & 31.73 & 11.0 & 0.4 & 4.41 \\ (2,1) & 14.0 & 25.2 & 25.14 & 9.7 & 0.7 & 4.42 \\ (2,2) & 47.5 & 38.4 & 21.71 & 8.4 & 0.6 & 4.48 \\ (3,3) & 66.5 & 23.8 & 35.52 & 14.8 & 1.7 & 4.59 \\ (3,0) & 23.0 & 1 & 26.90 & 20.0 & 1.7 & 35.63 \\ (1,0) & 83.5 & 1 & 49.63 & 24.2 & 1.0 & 35.65 \\ (2,0) & 63.0 & 1 & 37.88 & 23.8 & 1.4 & 35.65 \\ (0,0) & 90.0 & 1 & 7.72 & 2.2 & 0.0 & 36.45 \\ (4,0) & 3.0 & 1 & 101.88 & 86.0 & 9.1 & 49.94 \\ \hline \end{tabular}} \smallskip \par {The inclination angle $i$ is expressed in degrees; $v \sin i$ is the projected rotational velocity, expressed in km~s$^{-1}$; $A_{\rm p}$ is the amplitude of the radial part of the pulsation velocity, expressed in \mbox{km~s$^{-1}$}; and $v_{\rm r,max}$ and $v_{\rm t,max}$ are, respectively, the maximum radial and tangential surface velocity due to the mode, expressed in \mbox{km~s$^{-1}$}.} \end{table}