\begin{table}%t3 %\centering \par \caption{\label{comb}First 20 frequencies identified in the amplitude spectrum.} \begin{tabular}{r rr c} \hline \hline \multicolumn{1}{c}{Term} & \multicolumn{1}{c}{Frequency}& \multicolumn{1}{c}{Ampl.} & Possible combination \\ \multicolumn{1}{c}{}& \multicolumn{1}{c}{[d$^{-1}$]} & \multicolumn{1}{c}{[mmag]} &terms \\ \hline $f_1$ & 6.92528 & 15.4539 & $f_{29}=2f_1$, $f_{215}=3f_1$ \\ $f_2$ & 11.21669 & 6.7220 & $f_{112}=f_1+f_2$, $f_{123}=f_2-f_1$\\ & & & $f_{414}=2f_2$ \\ $f_3$ & 11.25807 & 4.0143 & $f_{159}=f_1+f_3$, $f_{806}=f_3-f_1$ \\ $f_4$ & 12.84846 & 3.3603 & $f_{129}=f_1+f_4$, $f_{791}=f_4-f_1$ \\ $f_5$ & 12.23831 & 3.3271 & $f_{217}=f_1+f_5$, $f_{895}=f_5-f_1$ \\ $f_6$ & 14.44689 & 3.1767 & $f_{118}=f_1+f_6$\\ $f_7$ & 13.27347 & 2.6672 & $f_{356}=f_1+f_7$\\ $f_8$ & 13.35865 & 2.3077 & $f_{149}=f_1+f_8$, $f_{736}=f_8-f_1$ \\ $f_9$ & 11.75102 & 1.4372 & \\ $f_{10}$ & 5.26653 & 1.1277 & $f_{64}=f_1+f_{10}$\\ $f_{11}$ & 14.46126 & 1.0604 & \\ $f_{12}$ & 14.43209 & 0.9731 & \\ $f_{13}$ & 9.95254 & 0.9385 & $f_{781}=f_{13}-f_1$\\ $f_{14}$ & 11.98380 & 0.8268 & $f_{619}=f_1+f_{14}$\\ $f_{15}$ & 6.55624 & 0.8259 & $f_{141}=f_1+f_{15}$\\ $f_{16}$ & 7.40446 & 0.8099 & \\ $f_{17}$ & 13.56880 & 0.7768 & $f_{497}=f_{17}-f_1$\\ $f_{18}$ & 10.26062 & 0.7332 & $f_{309}=f_1+f_{18}$\\ $f_{19}$ & 5.78177 & 0.7046 & \\ $f_{20}$ & 6.62914 & 0.6435 & $f_{494}=f_1+f_{20}$\\ \hline \end{tabular} \end{table}