\begin{table}%t1 \caption{\label{tab:params}CoRoT-1 system parameters and 1-$\sigma$~error limits derived from the MCMC~analysis.} \par \small%\centerline { \begin{tabular}{lcccc} \hline\hline Parameter & Value & Bayesian penalty & B08 & Unit \\ \hline $Jump$ $parameters$ & & & \\ Transit epoch $ T_0 $ & $ 2~454~524.62324^{\rm +0.00009}_{-0.00013}$ & & 2~454~159.4532 $\pm$ 0.0001& BJD \\ Planet/star area ratio $ (R_{\rm p}/R_{\rm s})^2 $ & $ 0.01906^{\rm +0.00020}_{-0.00040} $ & & $0.01927 \pm 0.00058$ \\ Transit width $W$ & $ 0.10439 \pm 0.00094 $ & & & day \\ 2.09 $\mu$m occultation depth & $0.00278^{\rm + 0.00043}_{- 0.00066}$ & & & \\ $ b'=a\cos{i}/R_\ast $ & $ 0.398^{\rm + 0.032}_{- 0.043} $ & & $0.420 \pm 0.043$ & $R_*$ \\ RV $K_2$ & $215^{\rm +15}_{-16}$ & & $216 \pm 13$ \\ RV $\gamma_1$ & $23.366^{\rm +0.020}_{-0.017}$ & & & \kms \\ RV $\gamma_2$ & $23.350^{\rm +0.012}_{-0.011}$ & & & \kms \\ $e\cos{\omega}$ & $0.0083^{\rm +0.0038}_{-0.0025}$ & & \\ $e\sin{\omega}$ & $-0.070^{\rm +0.029}_{-0.042}$ & & \\ $A_{\rm transit}$ & $0.99963^{\rm +0.00028}_{-0.00009}$ & & \\ $B_{\rm transit}$ & $0.017^{\rm +0.003}_{-0.018}$ & & & day$^{-2}$ \\ $C_{\rm transit}$ & $-0.10^{\rm +0.12}_{-0.02}$ & & & day$^{-1}$ \\ $A_{\rm occultation}$ &$1.00041^{\rm +0.00096}_{-0.00052}$ & & \\ $B_{\rm occultation}$ &$-0.008^{\rm +0.007}_{-0.023}$ & & & day$^{-2}$ \\ $C_{\rm occultation}$ & $0.029^{\rm +0.079}_{-0.029}$& & & day$^{-1}$ \\ Orbital period $ P$ & $ 1.5089686^{\rm + 0.0000005}_{- 0.0000006} $ & from timings in Bean (\cite{Bean09}) & 1.5089557 $\pm$ 0.0000064 & day \\ Stellar mass $ M_\ast $ & $ 1.01^{\rm +0.13}_{-0.22}$ & 0.93 $\pm$ 0.18 & 0.95 $\pm$ 0.15 & $M_\odot$ \\ $R$-filter $c_1$ & $ 0.794^{\rm + 0.047}_{- 0.048}$ & 0.909 $\pm$ 0.067 & & \\ $R$-filter $c_2$ & $ -0.444^{\rm + 0.054 }_{- 0.032}$ & --0.423 $\pm$ 0.046 & & \\[2pt] \hline $Deduced$ $parameters$ & & & \\ RV $K$ & $ 188 \pm 14 $ & & 188 $\pm$ 11& \ms \\ $b_{\rm transit}$ & $ 0.426^{\rm + 0.035}_{- 0.042} $ & & $0.420 \pm 0.043$ & $R_*$ \\ $b_{\rm occultation}$ & $ 0.370^{\rm + 0.037}_{- 0.049} $ & & $0.420 \pm 0.043$ & $R_*$ \\ Orbital semi-major axis $ a $ & $ 0.0259 ^{\rm + 0.0011}_{- 0.0020} $ & & $0.0254 \pm 0.0014$ & AU \\ Orbital inclination $ i $ & $ 85.66^{\rm +0.62}_{-0.48} $ & & 85.1 $\pm$ 0.5& degree \\ Orbital eccentricity $ e $ & $ 0.071^{\rm +0.042}_{-0.028} $ & & 0 (fixed) \\ Argument of periastron $ \omega $ & $276.7^{\rm +5.9}_{-4.3}$ & & & degree \\ Stellar radius $ R_\ast $ & $ 1.057^{\rm + 0.055}_{- 0.094} $ & & 1.11 $\pm$ 0.05 & $R_\odot$ \\ Stellar density $\rho_* $ & $0.86^{\rm + 0.13}_{- 0.08} $ & & $0.698 \pm 0.033$ & $\rho_\odot $\\ $R$-filter $u_1$ & $ 0.229^{\rm + 0.025 }_{- 0.022}$ & & \\ $R$-filter $u_2$ & $ 0.336^{\rm + 0.012}_{- 0.020}$ & & \\ Planet radius $ R_{\rm p} $ & $ 1.45 ^{\rm + 0.07}_{- 0.13} $ & & 1.49 $\pm$ 0.08 & $R_J$ \\ Planet mass $ M_{\rm p} $ & $ 1.07 ^{\rm + 0.13}_{- 0.18} $ & & 1.03 $\pm$ 0.12 & $M_J$ \\ Planet density $ \rho_{\rm p} $ & $0.350^{\rm +0.077}_{-0.042}$ & & $0.31 \pm 0.06$ & $\rho_{J}$ \\ \hline \end{tabular}} \medskip The parameters $A$, $B$, and $C$ are the zero-, first- and second-order coefficients of the polynomial used to model the photometric trend. The values and error bars used in the Bayesian penalties are shown in the third column. Fourth column shows the values presented in~B08. \end{table}