\begin{table}%t1 %\centering \par \caption{\label{table:Eunomia}Results of the photometric inversion of simulated ellipsoids and Eunomia-like shaped asteroids.} \begin{tabular}{lcccccc} \hline\hline & \multicolumn{1}{c}{$\lambda$(pole)} & \multicolumn{1}{c}{$\beta$(pole)} & \multicolumn{1}{c}{Period} & $b/a$ & $c/a$ & $\epsilon$\\ & \multicolumn{1}{c}{(deg)} & \multicolumn{1}{c}{(deg)} & \multicolumn{1}{c}{(hours)} & & & (mag) \\ \hline Simulation: ellipsoid, geometric scattering & $48.5$ & $51.0$ & $19.150000$ & $0.86$ & $0.71$ & \\ Inversion solution & $48.5\pm0.5$ & $51.3\pm0.7$ & $19.149993\pm0.000021$ & $0.86\pm0.00$ & $0.71\pm0.00$ & $0.000$ \\ Simulation: ellipsoid, Hapke scattering & $48.5$ & $51.0$ & $19.150000$ & $0.86$ & $0.71$ & \\ Inversion solution & $53.3\pm0.8$ & $46.2\pm2.4$ & $19.149683\pm0.000031$ & $0.83\pm0.00$ & $0.71\pm0.02$ & $0.024$ \\ Simulation: Eunomia shape, geom. scattering & $48.5$ & $51.0$ & $19.150000$ & N/A & N/A & \\ Inversion solution & $47.8\pm2.1$ & $49.2\pm1.7$ & $19.149923\pm0.000043$ & $0.73\pm0.01$ & $0.71\pm0.01$ & $0.022$ \\ Simulation: Eunomia shape, Hapke scattering & $48.5$ & $51.0$ & $19.150000$ & N/A & N/A & \\ Inversion solution (1) & $54.7\pm0.2$ & $49.9\pm0.3$ & $19.149746\pm0.000008$ & $0.69\pm0.00$ & $0.67\pm0.00$ & $0.050$ \\ Inversion solution (2) & $256.3\pm0.3$ & $66.9\pm0.2$ & $19.149699\pm0.000003$ & $0.71\pm0.00$ & $0.58\pm0.00$ & $0.049$ \\ \hline \end{tabular} \end{table}