\begin{table}%t2 \caption{\label{best_fit_no_ISRF}best-fit parameters for the case $G_0 = 1$. Note that $\chi_{\rm red}^{2} = \chi ^{2}/\nu$ where $\nu$ is the number of degrees of freedom. } %\centerline {\begin{tabular}{lccccc} \hline \hline \noalign{\smallskip} Observation & $\alpha$ & $Y$ & $\tau_{100}$ & $\chi _{\rm red}^{2}$ & $\nu$\\ \hline 850~$\mu$m profile & 1.4 & 160 & $-$ & 0.72 & 10 \\ 450~$\mu$m profile & 0.6 & 120 & $-$ & 0.63 & 10 \\ 350~$\mu$m profile & 0.5 & 170 & $-$ & 0.47 & 10 \\ All profiles & 0.6 & 120 & $-$ & 1.24 & 36 \\ SED & $-$ & $-$ & 0.6 & 0.55 & 3 \\ \hline \end{tabular}} \smallskip The first line reports the best-fit obtained using only the 850~$\mu$m brightness profile; second line, using the 450~$\mu$m brightness profile; third line, using the 350~$\mu$m brightness profile; fourth line gives the best-fit using the three profiles; the last line gives the best-fit using the SED. \end{table}