\begin{table}%t7 \caption{\label{nh3par}\nh\ line parameters from the fits to the \nh~(1, 1) magnetic hyperfine components.} \small%\centerline { \begin{tabular}{lcccc} \hline\hline\noalign{\smallskip} &\vel &$\Delta~v^{a}$ &$A\tau_{\rm m}^{b}$ &$\tau_{\rm m}^{c}$\\ Source &(\kms) &(\kms) &(K) &\\ \hline VLA~8A &$-19.99\pm0.01$ &$0.8\pm0.1$ &11.04~$\pm$~0.32 &2.71~$\pm$~0.13 \\ VLA~8B &$-19.92\pm0.01$ &$0.9\pm0.1$ &\phn8.41~$\pm$~0.35 &2.12~$\pm$~0.16 \\ IRS~1 &$-19.92\pm0.01$ &$0.9\pm0.1$ &\phn8.39~$\pm$~0.34 &2.11~$\pm$~0.15 \\ MM2 &$-19.85\pm0.01$ &$0.7\pm0.1$ &\phn6.60~$\pm$~0.34 &4.40~$\pm$~0.37 \\ MM1 &$-19.96\pm0.01$ &$0.7\pm0.1$ &16.34~$\pm$~0.54 &3.46~$\pm$~0.17 \\ SC &$-19.96\pm0.01$ &$0.6\pm0.1$ &10.08~$\pm$~0.49 &3.96~$\pm$~0.27\\ \hline \end{tabular}} \medskip $^{a}$ Intrinsic line width ({\it FWHM}) of the magnetic hyperfine component. $^{b}$ $A=f(J_{\nu}(T_{{\rm ex}})-J_{\nu}(T_{{\rm bg}}))$, where $f$ is the filling factor, $\Tex$ is the excitation temperature of the transition, $T_{{\rm bg}}$ is the background radiation temperature, and $J_{\nu}(T)$ is the intensity in units of temperature, $J_{\nu}(T)=(h\nu/k)/(\exp(h\nu/kT)-1)$. $^{c}$ Optical depth of the main line obtained from the fit. \end{table}