\begin{table}%t1 \caption{\label{table:matrices}Table of matrices.} \par %\centering \small \begin{tabular}{llll} \hline\hline Matrix & Size & Eq. & Comment\\ \hline $\bP$ & $n_{t}\times 3n_p$ & (\ref{eq:pointing}) & pointing matrix\\ $\bF$ & $n_{t} \times n_b$ & (\ref{idealized_noise}) & baselines to TOD \\ $\Cw \equiv \langle \bw \bw^{\rm T} \rangle$ & $n_{t} \times n_{t}$ & (\ref{eq:cw}) & white noise cov. \\ $\bM \equiv \bP^{\rm T}\Cwi\bP$ & $3n_p \times 3n_p$ & (\ref{eq:Mdef}) & $N_{\rm obs}$ matrix \\ $\bB \equiv \bMi\bP^{\rm T}\Cwi$ & $3n_p \times n_{t}$ & (\ref{eq:Bdef}) & bin TOD to a map \\ $\bZ \equiv \bI - \bP\bB$ & $n_{t}\times n_{t}$ & (\ref{eq:Zdef}) & \\ $\bD \equiv \bF^{\rm T}\Cwi\bZ\bF$ & $n_b\times n_b$ & (\ref{eq:Dshort}) & \\ $\bA \equiv \bDi\bF^{\rm T}\Cwi\bZ$ & $n_b\times n_{t}$ & (\ref{eq:Adef}) & solve baselines \\ $\bR \equiv \left(\bF^{\rm T}\Cwi\bF\right)^{-1}\bF^{\rm T}\Cwi$ & $n_b\times n_{t}$ & (\ref{eq:Rdef}) & reference baselines \\ \hline \end{tabular} \end{table}