\begin{table}%t2 \caption{\label{tab2}Eigenvectors for some highly mixed levels of Cr VIII.} \small%\centerline { \begin{tabular}{rllr} \hline \hline Index & Configuration & Level & Mixing coefficients \\ \hline &&& \\[-8pt] 17 & 3s$^2$3p$^4$($^3$P)3d & $^4$P$_{5/2}$ & 0.72({\bf 17})$-$0.46(18) \\ 18 & 3s$^2$3p$^4$($^1$D)3d & $^2$D$_{5/2}$ & 0.56({\bf 18})$+$0.66(17) \\ 101 & 3s$^2$3p$^3$($^2$P)3d$^2$($^3$P) & $^2$S$^{\circ}_{1/2}$ & 0.60({\bf 101})$-$0.30(322)$-$0.23(114)$+$0.51(178)$+$0.34(143) \\ 112 & 3s$^2$3p$^3$($^2$P)3d$^2$($^1$D) & $^2$D$^{\circ}_{5/2}$ & $-$0.26({\bf 112})$+$0.30(222)$+$0.31(192)$-$0.28(187)$-$0.24(133)$+$0.29(246)$-$0.26(204)$-$0.46(113) \\ 113 & 3s$^2$3p$^3$($^2$P)3d$^2$($^1$D) & $^2$F$^{\circ}_{5/2}$ & 0.50({\bf 113})$-$0.27(222)$+$0.22(192)$+$0.33(108)$+$0.33(157) \\ 114 & 3s$^2$3p$^3$($^2$D)3d$^2$($^1$D) & $^2$P$^{\circ}_{1/2}$ & 0.37({\bf 114})$-$0.30(47)$+$0.41(322)$+$0.36(178)$+$0.44(101)$-$0.41(143)$+$0.20(174) \\ 126 & 3s$^2$3p$^3$($^2$D)3d$^2$($^3$F) & $^4$D$^{\circ}_{3/2}$ & 0.48({\bf 126})$+$0.23(65)$-$0.31(154)$+$0.23(104)$-$0.44(158)$+$0.51(127) \\ 127 & 3s$^2$3p$^3$($^2$P)3d$^2$($^3$P) & $^4$P$^{\circ}_{3/2}$ & 0.74({\bf 127})$-$0.36(126)$-$0.26(67)$+$0.35(158) \\ 165 & 3s$^2$3p$^4$($^3$P)4p & $^4$P$^{\circ}_{1/2}$ & $-$0.77({\bf 165})$+$0.20(170)$-$0.33(185)$+$0.29(224) \\ 170 & 3s$^2$3p$^3$($^2$D)3d$^2$($^3$P) & $^2$P$^{\circ}_{1/2}$ & $-$0.40({\bf 170})$+$0.21(322)$-$0.41(174)$-$0.51(165)$+$0.35(185)$-$0.27(224) \\ 179 & 3s$^2$3p$^4$($^3$P)4p & $^4$D$^{\circ}_{5/2}$ & 0.47({\bf 179})$+$0.22(61)$-$0.20(192)$-$0.38(181)$-$0.26(187)$-$0.24(191)$+$0.36(168)$+$0.20(205) \\ 181 & 3s$^2$3p$^3$($^2$D)3d$^2$($^1$G) & $^2$F$^{\circ}_{5/2}$ & $-$0.49({\bf 181})$-$0.22(122)$-$0.35(222)$-$0.22(191)$-$0.30(113)$-$0.49(179) \\[2pt] \hline \end{tabular}} \medskip Inside the bracket is the level number and outside is the corresponding eigenvector and the level chosen is in the {\bf bold face}. \end{table}