\begin{table}%t1a \caption{\label{tabla 1a}Coefficients $a_{r} (i,j)$ and $ b_{r}(i,j)$ of the power series for $r$, corresponding to a stratified medium with a generic density distribution $F(z)^a$.} \par %\centerline { \begin{tabular}{c c l l} \hline \hline ${i}$ & ${j}$ & $a_{r} {(i,j)}$ & $ b_{r}{(i,j)}$ \\ \hline 1 & 1 & 1 & $ {f}_{1}/2$ \\ \hline 2 & 1 & $- {f}_{1}^{2}+2 {f}_{2}$ & $-2 {f}_{1}^{3}+12 {f}_{3} $ \\ & 2 & $- {f}_{1}^{2}- 2 {f}_{2} $ & $ - {f}_{1}^{3}- 8 {f}_{1} {f}_{2} - 6 {f}_{3} $ \\ \hline 3 & 1 & $4 {f}_{1}^{4}-12 {f}_{1}^{2} {f}_{2} + 48 {f}_{4} $ & $5 {f}_{1}^{5}+ 52 {f}_{1}^{3} {f}_{2} -152 {f}_{1} {f}_{2}^{2}-144 {f}_{1}^{2} {f}_{3} +180 {f}_{2} {f}_{3} $ \\ &&& $+ 264 {f}_{1} {f}_{4} + 600 {f}_{5}$\\ & 2 & $ 3 {f}_{1}^{4}+ 22 {f}_{1}^{2} {f}_{2}-16 {f}_{2}^{2} -42 {f}_{1} {f}_{3}-72 {f}_{4}$ & $ 4 {f}_{1}^{5}+ 104 {f}_{1}^{3} {f}_{2}-360 {f}_{2} {f}_{3}-528 {f}_{1} {f}_{4}- 480 {f}_{5} $ \\ & 3 & $ {f}_{1}^{4}+ 22 {f}_{1}^{2} {f}_{2} +16 {f}_{2}^{2} + 42 {f}_{1} {f}_{3} + 24 {f}_{4}$ & $ {f}_{1}^{5}+ 52 {f}_{1}^{3} {f}_{2}+136 {f}_{1} {f}_{2}^{2}+192 {f}_{2}^{2} {f}_{3} +180 {f}_{2} {f}_{3} $ \\ &&&$ + 264 {f}_{1} {f}_{4}+ 120 {f}_{5}$\\ \hline 4& 1& $ -15 {f}_{1}^{6}- 54 {f}_{1}^{4} {f}_{2}+ 464 {f}_{1}^{2} {f}_{2}^{2} -304 {f}_{2}^{3} + 300 {f}_{1}^{3} {f}_{3} -1488 {f}_{1} {f}_{2} {f}_{3} $ & $ -14 {f}_{1}^{7}- 960 {f}_{1}^{5} {f}_{2}+ 3072 {f}_{1}^{3} {f}_{2}^{2} + 1404 {f}_{1}^{4} {f}_{3} - 11424 {f}_{2}^{2} {f}_{3} $ \\ & & $+540 {f}_{3}^{2}-576 {f}_{1}^{2} {f}_{4} + 1248 {f}_{2} {f}_{4}+1920 {f}_{1} {f}_{5}+ 3600 {f}_{6}$ & $-7848 {f}_{1} {f}_{3}^{2} -14016 {f}_{1} {f}_{2} {f}_{4} + 32256 {f}_{3} {f}_{4} -1920 {f}_{1}^{2} {f}_{5} $ \\ &&&$+ 40320 {f}_{2} {f}_{5}+63360 {f}_{1} {f}_{6}+70560 {f}_{7} $\\ & 2& $ -11 {f}_{1}^{6}+ 322 {f}_{1}^{4} {f}_{2} + 464 {f}_{1}^{2} {f}_{2}^{2}+304 {f}_{2}^{3} + 300 {f}_{1}^{3} {f}_{3} +1488 {f}_{1} {f}_{2} {f}_{3} $ & $ -14 {f}_{1}^{7}-1440 {f}_{1}^{5} {f}_{2}-1536 {f}_{1}^{3} {f}_{2}^{2} + 5888 {f}_{1} {f}_{2}^{3} -1836 {f}_{1}^{4} {f}_{3} $\\ & & $-1620 {f}_{3}^{2}+576 {f}_{1}^{2} {f}_{4}-3744 {f}_{2} {f}_{4}-5760 {f}_{1} {f}_{5}-6480 {f}_{6}$ & $ +20880 {f}_{1}^{2} {f}_{2} {f}_{3} -1344 {f}_{2} {f}_{3} -5688 {f}_{1} {f}_{3}^{2} +8928 {f}_{1}^{3} {f}_{4} $\\ & & $ $ & $ -15744 {f}_{1} {f}_{2} {f}_{4}-48384 {f}_{3} {f}_{4}-17760 {f}_{1}^{2} {f}_{5}-60480 {f}_{2} {f}_{5} $ \\ &&&$-95040 {f}_{1} {f}_{6}-70560 {f}_{6}$\\ & 3& $ -5 {f}_{1}^{6}- 342 {f}_{1}^{4} {f}_{2} -720 {f}_{1}^{2} {f}_{2}^{2}+ 272 {f}_{2}^{3} -732 {f}_{1}^{3} {f}_{3} +2304 {f}_{1} {f}_{2} {f}_{3} $ & $-6 {f}_{1}^{7}- 960 {f}_{1}^{5} {f}_{2}-6144 {f}_{1}^{3} {f}_{2}^{2} -5076 {f}_{1}^{4} {f}_{3} +14112 {f}_{2}^{2} {f}_{3} $\\ & & $ +1620 {f}_{3}^{2}+ 1824 {f}_{1}^{2} {f}_{4}+3744 {f}_{2} {f}_{4}+5760 {f}_{1} {f}_{5}+ 3600 {f}_{6}$ & $ +19224 {f}_{1} {f}_{3}^{2} +45504 {f}_{1} {f}_{2} {f}_{4} + 32256 {f}_{3} {f}_{4} +37440 {f}_{1}^{2} {f}_{5} $ \\ &&&$+ 40320 {f}_{2} {f}_{5}+63360 {f}_{1} {f}_{6}+30240 {f}_{7}$\\ & 4& $- {f}_{1}^{6}- 114 {f}_{1}^{4} {f}_{2} -720 {f}_{1}^{2} {f}_{2}^{2}- 272 {f}_{2}^{3} -732 {f}_{1}^{3} {f}_{3} -2304 {f}_{1} {f}_{2} {f}_{3} $ & $ - {f}_{1}^{7}-240 {f}_{1}^{5} {f}_{2}-3072 {f}_{1}^{3} {f}_{2}^{2}-3968 {f}_{1} {f}_{2}^{3} -2538 {f}_{1}^{4} {f}_{3} $ \\ & & $ -540 {f}_{3}^{2}- 1824 {f}_{1}^{2} {f}_{4} -1248 {f}_{2} {f}_{4} -1920 {f}_{1} {f}_{5}-720 {f}_{6}$ & $ -17928 {f}_{1}^{2} {f}_{2} {f}_{3} -7056 {f}_{2} {f}_{3} -9612 {f}_{1} {f}_{3}^{2} -10224 {f}_{1}^{3} {f}_{4} $ \\ & & $ $ & $ -22752 {f}_{1} {f}_{2} {f}_{4}-8064 {f}_{3} {f}_{4}-18720 {f}_{1}^{2} {f}_{5}-10080 {f}_{2} {f}_{5} $ \\ &&&$-15840 {f}_{1} {f}_{6}-5040 {f}_{7}$\\ \hline %\noalign{\smallskip} %5& 1& $ $ & $ $ \\ %\noalign{\smallskip} % & 2& $ $ & $ $\\ %\noalign{\smallskip} %& 3& $ $ & $ $ \\ %\noalign{\smallskip} % & 4& $ $ & $ $ \\ %\noalign{\smallskip} %& 5& $ $ & $ $ \\ %\noalign{\smallskip} %\hline \end{tabular}} $^a$ The terms ${ f_{1}, f_{2},f_{3},~...}$ represent the coefficients of the Taylor expansion of $F(z)^{-1}$, whose numerical values are determined from the specific distribution function $F(z)$ that we choose. \end{table}