\begin{table}%t3 \caption{\label{sechtabla}Coefficients $a_{r}^{\star} {(i,j)}$ and $ b_{r}^{\star}{(i,j)}$ of the power series for $r$, corresponding to a stratified medium with a ${\rm sech} ^{2}(Z/{H})$ density distribution.} \par %\centerline { \small\begin{tabular}{c c l l} \hline \hline ${i}$ & ${j}$ & $a_{r}^{\star} {(i,j)}$ & $ b_{r}^{\star}{(i,j)}$ \\ \hline 1 & 1 & 1 & 1 \\ \hline 2 & 1 & $-\frac{1}{3} (-1 +\alpha)(1 +\alpha)$ & $-\frac{2}{3} (-1 +\alpha)(1 +\alpha)$ \\ & 2 & $-\frac{1}{3} (1 + 3 \alpha ^{2})$ & $ -1 (1 + \alpha ^{2})$ \\ \hline 3 & 1 & $\frac{2}{15} (-1 +\alpha)^{2}(1 +\alpha)^{2}$ & $\frac{17}{45}(-1 +\alpha)^{2}(1 +\alpha)^{2}) $ \\ & 2 & $\frac{1}{3}(-1 +\alpha)(1 +\alpha)(1 + 3 \alpha ^{2})$ & $\frac{4}{3} (-1 +\alpha)(1 +\alpha)(1+ \alpha ^{2})$ \\ & 3 & $\frac{1}{5} (1 + 10 \alpha ^{2}+ 5 \alpha ^{4})$ & $\frac{1}{3} (3 + \alpha ^{2})(1+ 3 \alpha ^{2})$ \\ \hline 4 & 1 & $-\frac{17}{315}(-1 +\alpha)^{3}(1 +\alpha)^{3} $ & $-\frac{62}{315} (-1 + \alpha)^{3}(1 + \alpha)^{3}$ \\ & 2 & $-\frac{11}{45} (-1 +\alpha)^{2}(1 +\alpha)^{2} (1+ 3 \alpha ^{2})$ & $-\frac{6}{5} (-1+ \alpha )^{2}(1+ \alpha )^{2} (1 + \alpha ^{2})$ \\ & 3 & $-\frac{1}{3}(-1 +\alpha)(1 +\alpha)(1 + 10 \alpha ^{2}+ 5 \alpha ^{4}) $ & $-\frac{2}{3}(-1 +\alpha)(1 +\alpha) (3 +\alpha ^{2})(1+ 3 \alpha ^{2})$ \\ & 4 & $-\frac{1}{7} (1 +21\alpha ^{2}+ 35 \alpha ^{4}+ 7\alpha ^{6} )$ & $ -1 (1 + \alpha ^{2})(1+ 6 \alpha ^{2}+ \alpha ^{4} )$ \\ \hline 5 & 1 & $\frac{62}{2835}(-1 +\alpha)^{4}(1 +\alpha)^{4}$ & $\frac{1382}{14175} (-1 +\alpha)^{4}(1 +\alpha)^{4}$ \\ & 2 & $\frac{88}{567}(-1 +\alpha)^{3}(1 +\alpha)^{3} (1+ 3 \alpha ^{2})$ & $\frac{848}{945} (-1 +\alpha)^{3}(1 +\alpha)^{3} (1 + \alpha ^{2})$ \\ & 3 & $\frac{16}{45}(-1 +\alpha)^{3}(1 +\alpha)^{3} (1+ 10 \alpha ^{2} + 5 \alpha ^{4})$ & $\frac{37}{45}(-1 +\alpha)^{2}(1 +\alpha)^{2} (3+ \alpha ^{2})(1+ 3\alpha ^{2})$ \\ & 4 & $\frac{1}{3}(-1 +\alpha)(1 +\alpha) (1 +21\alpha ^{2}+35 \alpha ^{4}+7 \alpha ^{6})$ & $\frac{8}{3}(-1 +\alpha)(1 +\alpha) (1 + \alpha ^{2})(1+ 6 \alpha ^{2}+ \alpha ^{4})$ \\ & 5 & $\frac{1}{9} ( 1 + 36\alpha ^{2} + 126 \alpha ^{4} + 84 \alpha ^{6}+ 9 \alpha ^{8} )$ & $\frac{1}{5} ( 5 + 10 \alpha ^{2} + \alpha ^{4})(1 + 10 \alpha ^{2}+ 5 \alpha ^{4} )$ \\ \hline \end{tabular}}%\vspace*{1.5mm} \end{table}