\begin{table}%t4 \caption{\label{sinoptico}Synopsis of the basic equations that characterize the studied gas media and the propagation of a shock wave within them$^{a}$. } \par %\centerline { \begin{tabular}{l l l c } \hline \hline $\rho (Z)=$ & $\frac{\rho (z)}{\rho_{0}}= F(z)=$ & Solutions for the shock-wave motion & Blow-out time $t_{b}$ \\ \hline $\rho_{\rm c} \exp~ (-Z/{H})$ & $\exp~ (-z/{H})$ & $r= 2 {H} \arctan \left( \frac{t_{\star} \cos \varphi}{1-t_{\star} \sin \varphi} \right)$ & 1.0 \\ & & $z= - 2 {H} \ln \left(\sqrt{ 1-2 t_{\star} \sin \varphi + t_{\star}^2}\right)$ & \\ for $ 0\leq Z \leq \infty$ & for $ -Z_{0}\leq z \leq \infty$ & for $ -Z_{0}\leq z \leq \infty$ & \\ \hline $\frac{\rho_{\rm c}}{ (1+\frac{Z}{{H}})}$ & $\frac{1}{ (1+\frac{z}{{H_{\star}}})}$ & $r = 2 {H_{\star}} \big \{ t_{\star} \cos \varphi+ \frac{\cos 2 \varphi}{(2 \cos \varphi)^{2} } \left[ \sin (2 t_{\star} \cos \varphi)- 2 t_{\star} \cos \varphi)\right ] + $ & $\infty $ \\ & where ${H_{\star}=H} +Z_{0}$ & $ \frac{\sin \varphi}{2 \cos \varphi} \left [1- \cos (2 t_{\star} \cos \varphi ) \right ] \big \}$ & \\ & & $ z = 2 {H_{\star}} \big \{ \frac{\sin 2 \varphi}{2 \cos \varphi } \sin (2 t_{\star} \cos \varphi)+ \frac{\cos 2 \varphi}{(2 \cos \varphi)^{2}} \big [\cos (2 t_{\star} \cos \varphi)-1\big ] \big \}. $ & \\ for $0 \leq Z \leq \infty$ & for $-Z_{0} \leq z \leq \infty$ & for $-Z_{0} \leq z \leq \infty$ & \\ \hline $\frac{\rho_{\rm c}}{ (1+\frac{Z}{{H}})^{2}}$ & $\frac{1}{ (1+\frac{z}{\rm{H_{\star}}})^{2}}$ & $r= {H_{\star}} \frac{\cos \varphi}{\coth 2 t_{\star} - \sin~ \varphi}$ & $\infty $ \\ & where ${H_{\star}=H} +Z_{0}$ & $z= {H_{\star}} \frac{2 \sin \varphi - \cos^{2}\varphi ~~ \sinh 2 t_{\star} }{\coth~ t_{\star} - \sin \varphi + \cos^{2}\varphi ~~ \sinh 2 t_{\star} } $ & \\ for $0 \leq Z \leq \infty$ & for $-Z_{0} \leq z \leq \infty$ & for $-Z_{0} \leq z \leq \infty$ & \\ \hline $\rho_{\rm c}~ {\rm sech }^{2} ~(Z/ {H})$ & $ [\cosh~ (z/{H})+ \alpha \sinh~ (z/{H})]^{-2}$ & $r= {H} ~\arctan \frac{ (p + q) \cos \varphi}{1 - p~ q - (p - q) \sin\varphi} $ & 0.5--0.78 \\ & where $\alpha= \tanh~ (Z_{0}/{H})$ & $ z= {H}~ \ln \sqrt{\frac{1+ 2 q \sin \varphi + q^{2}}{1- 2 p \sin \varphi + p^{2}} }.$ & \\ & & where $p=(1+\alpha)~ t_{\star}+{\sum_{n=2}^{\infty} (-1+\alpha)^{n-1} (1+\alpha)^{n}} B_{2n} {\frac{(-4^{n})(1-4^{n})}{(2 n)!}}~t_{\star}^{2n-1}$ & \\ & & and, $q= -(-1+\alpha)~ t_{\star}-{\sum_{n=2}^{\infty} (-1+\alpha)^{n} (1+\alpha)^{n-1}} B_{2n}{ \frac{(-4^{n})(1-4^{n})}{(2 n)!}}~t_{\star}^{2n-1}.$ & \\ for $-\infty\leq Z \leq \infty$ & for $ -\infty\leq z \leq \infty $ & for $ -\infty\leq z \leq \infty $ & \\ \hline \end{tabular}}\medskip \par $^a$ Density distribution of the plane-parallel stratified medium, with respect to a $Z$ axis (Col.~1) and to a $z$ axis (Col.~2). The $z$ and $Z$ axes are along the line that passes through the explosion point and is perpendicular to the stratification plane. The origin of $Z$-axis lies on the plane of maximum gas density $\rho_{\rm c}$ or symmetry plane, e.g. the Galactic plane. Both positive axes point in the same sense, toward decreasing densities. We denote the $Z$-position (or altitude) of the explosion point by $Z_{0}$, origin of the $z$ axis. The positions $(r, z)$ of the wave, given by the parametric equations (Col.~3), are referred to the cylindrical coordinate system $(r, z)$ with origin in the explosion point and symmetry around the $z$-axis. The valid range for each function is given. \end{table}