\begin{table}%t7 \caption{\label{tab:CH2DCN} Quantum numbers of rotational transitions of CH$_2$DCN from present work, frequencies (MHz), uncertainties unc. (kHz), and residuals o$-$c (kHz) between observed frequencies and those calculated from the final set of spectroscopic parameters.} \par %\centerline { \small\begin{tabular}{ cc rr | cr rr } \hline \hline $J', K_a', K_c' {-} J'', K_a'', K_c''^a$ & Frequency & \multicolumn{1}{c}{unc.} & o$-$c & $J', K_a', K_c' {-} J'', K_a'', K_c''^a$ & Frequency & \multicolumn{1}{c}{unc.} & o$-$c \\ \hline 16, 5, d$-$15, 5, d & 277717.406 & 15 & 1 & 52, 2, 50$-$51, 2, 49 & 903537.321 & 100 & 79 \\ 16, 4, d$-$15, 4, d & 277761.128 & 8 & 0 & 52, 1, 51$-$51, 1, 50 & 904004.487 & 200 &$-$106 \\ 16, 1, 15$-$15, 1, 14 & 279000.540 & 8 & $-$4 & 53, 1, 53$-$52, 1, 52 & 913688.193 & 200 &$-$117 \\ 18, 10, d$-$17, 10, d & 312026.460 & 30 & $-$33 & 53, 5, d$-$52, 5, d & 918213.532 & 200 & 244 \\ 18, 9, d$-$17, 9, d & 312124.485 & 25 & $-$1 & 53, 2, 51$-$52, 2, 50 & 920897.991 & 200 &$-$104 \\ 18, 8, d$-$17, 8, d & 312212.301 & 20 & $-$22 & 53, 1, 52$-$52, 1, 51 & 921264.278 & 200 & $-$12 \\ 19, 1, 19$-$18, 1, 18 & 328415.596 & 20 & $-$4 & 57, 0, 57$-$56, 0, 56 & 983638.923 & 200 & 221 \\ 19, 10, d$-$18, 10, d & 329351.951 & 30 & $-$5 & 57, 7, d$-$56, 7, d & 986718.597 & 200 & $-$83 \\ 19, 3, 17$-$18, 3, 16 & 329864.188 & 20 & $-$3 & 57, 6, d$-$56, 6, d & 986958.857 & 100 & 25 \\ 19, 2, 17$-$18, 2, 16 & 330013.795 & 10 & 2 & 57, 5, d$-$56, 5, d & 987192.298 & 100 &$-$104 \\ 28, 2, 26$-$27, 2, 25 & 486412.193 & 50 & $-$14 & 57, 3, 54$-$56, 3, 53 & 988062.351 & 150 & 64 \\ 28, 6, d$-$27, 6, d & 485722.367 & 50 & 55 & 57, 1, 56$-$56, 1, 55 & 990226.073 & 150 &$-$131 \\ 28, 5, d$-$27, 5, d & 485817.005 & 50 & 17 & 59, 0, 59$-$58, 0, 58 & 1017787.045 & 100 & $-$42 \\ 28, 2, 27$-$27, 2, 26 & 485869.754 & 50 & 29 & 59, 3, 56$-$58, 3, 55 & 1022618.283 & 200 & 305 \\ 28, 4, d$-$27, 4, d & 485902.358 & 50 & 2 & 59, 2, 57$-$58, 2, 56 & 1024977.054 & 200 & 138 \\ 28, 3, 26$-$27, 3, 25 & 485983.562 & 50 & $-$53 & 60, 1, 60$-$59, 1, 59 & 1033530.934 & 200 & $-$76 \\ 28, 3, 25$-$27, 3, 24 & 485997.103 & 50 & 86 & 60, 2, 59$-$59, 2, 58 & 1038125.138 & 200 & 458 \\ 28, 8, d$-$27, 8, d & 485492.763 & 50 & 21 & 60, 1, 59$-$59, 1, 58 & 1041862.576 & 200 & 330 \\ 28, 7, d$-$27, 7, d & 485614.775 & 50 & 69 & 60, 2, 58$-$59, 2, 57 & 1042306.148 & 250 &$-$269 \\ 28, 10, d$-$27, 10, d & 485203.300 & 120 & $-$60 & 63, 1, 63$-$62, 1, 62 & 1084807.020 & 150 & $-$95 \\ 28, 9, d$-$27, 9, d & 485355.715 & 120 & $-$32 & 63, 0, 63$-$62, 0, 62 & 1086011.334 & 100 & $-$55 \\ 28, 1, 27$-$27, 1, 26 & 487942.201 & 80 & 8 & 63, 10, d$-$62, 10, d & 1089039.445 & 200 & 160 \\ 29, 4, d$-$28, 4, d & 503235.929 & 50 & 4 & 63, 9, d$-$62, 9, d & 1089381.592 & 150 &$-$123 \\ 29, 3, 27$-$28, 3, 26 & 503321.438 & 100 & $-$2 & 63, 2, 62$-$62, 2, 61 & 1089618.582 & 80 & 11 \\ 29, 3, 26$-$28, 3, 25 & 503337.368 & 100 & $-$40 & 63, 8, d$-$62, 8, d & 1089695.853 & 200 & 177 \\ 29, 2, 27$-$28, 2, 26 & 503793.683 & 50 & $-$15 & 63, 7, d$-$62, 7, d & 1089985.064 & 80 & 29 \\ 30, 8, d$-$29, 8, d & 520124.625 & 80 & 0 & 63, 6, d$-$62, 6, d & 1090257.213 & 80 & $-$35 \\ 30, 6, d$-$29, 6, d & 520371.360 & 100 & $-$16 & 63, 5, d$-$62, 5, d & 1090528.555 & 100 & 1 \\ 30, 3, 28$-$29, 3, 27 & 520657.371 & 100 & 155 & 63, 4, 60$-$62, 4, 59 & 1090822.850 & 80 & $-$22 \\ 30, 3, 27$-$29, 3, 26 & 520676.142 & 100 & 14 & 63, 4, 59$-$62, 4, 58 & 1090859.365 & 120 & $-$65 \\ 30, 2, 28$-$29, 2, 27 & 521175.868 & 100 & $-$24 & 63, 3, 60$-$62, 3, 59 & 1091699.685 & 80 & 31 \\ 31, 1, 31$-$30, 1, 30 & 535476.485 & 100 & 21 & 63, 1, 62$-$62, 1, 61 & 1093420.205 & 80 & 13 \\ 36, 1, 36$-$ 35, 1, 35 & 621614.941 & 30 & $-$32 & 64, 10, d$-$63, 10, d & 1106217.421 & 200 & $-$65 \\ 36, 11, d$-$35, 11, d & 623372.367 & 100 & 24 & 64, 7, d$-$63, 7, d & 1107179.127 & 80 & 44 \\ 36, 0, 36$-$35, 0, 35 & 623466.170 & 70 & $-$63 & 64, 1, 63$-$63, 1, 62 & 1110587.991 & 120 & $-$91 \\ 36, 10, d$-$35, 10, d & 623587.841 & 50 & $-$40 & 64, 2, 62$-$63, 2, 61 & 1111566.310 & 200 & 175 \\ 36, 9, d$-$35, 9, d & 623783.719 & 100 & $-$30 & 65, 1, 65$-$64, 1, 64 & 1118961.766 & 200 & 224 \\ 36, 7, d$-$35, 7, d & 624118.615 & 50 & 30 & 65, 0, 65$-$64, 0, 64 & 1120088.060 & 200 &$-$151 \\ 36, 6, d$-$35, 6, d & 624259.658 & 70 & $-$55 & 65, 8, d$-$64, 8, d & 1124068.425 & 200 & 150 \\ 36, 2, 35$-$35, 2, 34 & 624357.951 & 50 & 81 & 65, 6, d$-$64, 6, d & 1124651.425 & 200 & 25 \\ 36, 5, d$-$35, 5, d & 624386.762 & 70 & $-$54 & 65, 4, 62$-$64, 4, 61 & 1125246.197 & 150 & 32 \\ 36, 3, 33$-$35, 3, 32 & 624671.021 & 50 & 56 & 65, 3, 62$-$64, 3, 61 & 1126225.423 & 200 & 210 \\ 36, 2, 34$-$35, 2, 33 & 625480.300 & 40 & $-$32 & 65, 1, 64$-$64, 1, 63 & 1127746.725 & 100 & 50 \\ 37, 1, 37$-$36, 1, 36 & 638831.212 & 30 & $-$51 & 65, 2, 63$-$64, 2, 62 & 1128865.300 & 120 & 71 \\ 37, 11, d$-$36, 11, d & 640652.376 & 100 & $-$27 & 66, 4, 63$-$65, 4, 62 & 1142450.318 & 100 &$-$121 \\ 37, 10, d$-$36, 10, d & 640873.836 & 70 & $-$23 & 66, 4, 62$-$65, 4, 61 & 1142500.850 & 100 & 70 \\ 37, 9, d$-$36, 9, d & 641075.115 & 50 & $-$46 & 66, 3, 64$-$65, 3, 63 & 1142588.221 & 120 & 13 \\ 37, 8, d$-$36, 8, d & 641256.800 & 50 & 4 & 66, 1, 65 $-$ 65, 1, 64 & 1144895.808 & 200 & $-$15 \\ 37, 5, d$-$36, 5, d & 641696.453 & 20 & 3 & 66, 2, 64$-$65, 2, 63 & 1146157.487 & 50 & $-$17 \\ 37, 3, 34$-$36, 3, 33 & 641996.762 & 50 & $-$64 & 67, 1, 67$-$66, 1, 66 & 1153091.574 & 200 & $-$94 \\ 37, 1, 36$-$36, 1, 35 & 644319.793 & 40 & $-$22 & 67, 10, d$-$66, 10, d & 1157721.118 & 200 & 25 \\ 51, 1, 51$-$50, 1, 50 & 879398.852 & 150 & $-$74 & 67, 7, d$-$66, 7, d & 1158730.616 & 200 & 138 \\ 51, 6, d$-$50, 6, d & 883499.518 & 100 &$-$149 & 68, 1, 68$-$67, 1, 67 & 1170147.296 & 150 &$-$169 \\ 51, 5, d$-$ 50, 5, d & 883699.093 & 100 & 25 & 68, 0, 68$-$67, 0, 67 & 1171160.249 & 80 & 98 \\ 51, 3, 49$-$50, 3, 48 & 884076.317 & 150 &$-$113 & 68, 8, d$-$67, 8, d & 1175587.939 & 200 &$-$178 \\\hline 51, 2, 49$-$50, 2, 48 & 886173.147 & 200 & 119 & 68, 6, d$-$67, 6, d & 1176204.005 & 200 &$-$226 \\ 52, 1, 52$-$51, 1, 51 & 896546.406 & 150 & 179 & 68, 1, 67$-$67, 1, 66 & 1179165.037 & 200 &$-$191 \\ 52, 0, 52 $-$ 51, 0, 51 & 898157.427 & 150 & 45 & 69, 1, 69$-$68, 1, 68 & 1187196.902 & 200 &$-$100 \\ 52, 2, 51$-$51, 2, 50 & ~900538.159$^b$& 150 & $-$1 & 69, 0, 69$-$68, 0, 68 & 1188172.743 & 200 & 74 \\ 52, 7, d$-$51, 7, d & ~900538.159$^b$& 150 & $-$1 & 69, 1, 68$-$68, 1, 67 & 1196285.083 & 200 &$-$134 \\ \hline \end{tabular}} \medskip \par $^a$ A ``d'' given for $K_c$ signals that the asymmetry doubling has not been resolved for the respective $K_a$. The uncertainty and the residual refer to the average. Since $J - K_a - K_c = 0$ or 1, $K_c$ is redundant in such case.\\ $^b$ Blended lines treated as intensity weighted average in the fit. \end{table}