\begin{table}%t4 \caption{\label{t1}Matrix ${\bf G}_2$ is a symmetric matrix of inner products of the velocity components $\langle V_0~V_i~ V_j~...,\; V_0 ~V_p~ V_q~... \rangle$, according to Latin indices, with $V_0\equiv 1$ and the other indices sorted as $1 \leq i\leq j\leq \ldots \leq 3$ and $1 \leq p\leq q\leq \ldots \leq 3$\tablefootmark{\dag}.} $$ \begin{array}{r|ccccccccccccccc} & 0 & 1 & 2 & 3 & 1 1 & 1 2 & 1 3 & 2 2 & 2 3 & 3 3 & 1 1 1 & 1 1 2 &\cdots & 3 3 3 &\cdots\\\hline 0 & 1 & m_{1} & m_{2} & m_{3} & m_{1 1} & m_{1 2} &m_{1 3} & m_{22} & m_{23} & m_{3 3} & m_{1 1 1} & m_{1 1 2} &\cdots & m_{3 3 3} & \cdots\\ 1 & & m_{1 1} & m_{1 2}& m_{1 3} & m_{1 1 1} & m_{1 1 2} &m_{113} & m_{122}& m_{123}& m_{1 3 3} & m_{1 1 1 1} & m_{1 1 1 2} &\cdots & m_{1 3 3 3} & \cdots\\ 2 & & & m_{2 2}& m_{2 3} & m_{1 1 2} & m_{1 2 2} &m_{123} & m_{222}& m_{223}& m_{2 3 3} & m_{1 1 1 2} & m_{1 1 2 2} &\cdots & m_{2 3 3 3} & \cdots\\ 3 & & & & m_{3 3} & m_{1 1 3} & m_{1 2 3} &m_{133} & m_{223}& m_{233} & m_{3 3 3} & m_{1 1 1 3} & m_{1 1 2 3} &\cdots & m_{3 3 3 3} & \cdots\\ 11 & & & & & m_{1 1 1 1}& m_{1 1 1 2}&m_{1113}&m_{1122}&m_{1123}& m_{1 1 3 3} & m_{1 1 1 1 1} & m_{1 1 1 1 2} &\cdots & m_{1 1 3 3 3} & \cdots\\ 12 & & & & & & m_{1 1 2 2}&m_{1123}&m_{1222}&m_{1223}& m_{1 2 3 3} & m_{1 1 1 1 2} & m_{1 1 1 2 2} &\cdots & m_{1 2 3 3 3} & \cdots\\ 13 & & & & & & &m_{1133}&m_{1223}&m_{1233}& m_{ 1333} & m_{11113} & m_{11123} &\cdots & m_{13333} & \cdots\\ 22 & & & & & & & &m_{2222}&m_{2223}& m_{ 2233} & m_{11122} & m_{11222} &\cdots & m_{22333} & \cdots\\ 23 & & & & & & & & &m_{2233}& m_{ 2333} & m_{11123} & m_{11223} &\cdots & m_{23333} & \cdots\\ 33 & & & & & & & & & & m_{3 3 3 3} & m_{1 1 1 3 3} & m_{1 1 2 3 3} &\cdots & m_{3 3 3 3 3} & \cdots\\ 111 & & & & & & & & & & & m_{1 1 1 1 1 1} & m_{1 1 1 1 1 2} &\cdots & m_{1 1 1 3 3 3} & \cdots\\ 112 & & & & & & & & & & & & m_{1 1 1 1 2 2} &\cdots & m_{1 1 2 3 3 3} & \cdots\\ \vdots & & & & & & & & & & & & &\vdots &\vdots & \vdots\\ 333 & & & & & & & & & & & & & & m_{3 3 3 3 3 3} & \cdots\\ \vdots & & & & & & & & & & & & & & & \vdots\\ \end{array} $$ \tablefoot {\tablefoottext{\dag}{{The external first row and first column refer to the velocity indices.} Since the matrix is symmetric, only the diagonal and upper triangular part are written.}} \end{table}