\begin{table}%t8 \caption{\label{t5}Coefficient submatrix relating the third column~$\vec{C}$ of matrix~${\bf Y}$ and the third column~$\vec{c}$ of matrix~${\bf X}$.} $$ \left[ \begin{array}{cccccccccccccccccccc} 0&0&1&0&0&{\it m}_{{1}}&0&{\it m}_{{2}}&{\it m}_{{3}}&0&0&{\it m}_{{1 1}}&0&2~{\it m}_{{1 2}}&2~{\it m}_{{1 3}}&0&{\it m}_{{2 2}}&2~{\it m}_{{2 3}}&{\it m}_{{3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1}}&0&0&{\it m}_{{1 1}}&0&{\it m}_{{1 2}}&{\it m}_{{1 3}}&0&0&{\it m}_{{1 1 1}}&0&2~{\it m}_{{1 1 2}}&2~{\it m}_{{1 1 3}}&0&{\it m}_{{1 2 2}}&2~{\it m}_{{1 2 3}}&{\it m}_{{1 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{2}}&0&0&{\it m}_{{1 2}}&0&{\it m}_{{2 2}}&{\it m}_{{2 3}}&0&0&{\it m}_{{1 1 2}}&0&2~{\it m}_{{1 2 2}}&2~{\it m}_{{1 2 3}}&0&{\it m}_{{2 2 2}}&2~{\it m}_{{2 2 3}}&{\it m}_{{2 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{3}}&0&0&{\it m}_{{1 3}}&0&{\it m}_{{2 3}}&{\it m}_{{3 3}}&0&0&{\it m}_{{1 1 3}}&0&2~{\it m}_{{1 2 3}}&2~{\it m}_{{1 3 3}}&0&{\it m}_{{2 2 3}}&2~{\it m}_{{2 3 3}}&{\it m}_{{3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 1}}&0&0&{\it m}_{{1 1 1}}&0&{\it m}_{{1 1 2}}&{\it m}_{{1 1 3}}&0&0&{\it m}_{{1 1 1 1}}&0&2~{\it m}_{{1 1 1 2}}&2~{\it m}_{{1 1 1 3}}&0&{\it m}_{{1 1 2 2}}&2~{\it m}_{{1 1 2 3}}&{\it m}_{{1 1 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 2}}&0&0&{\it m}_{{1 1 2}}&0&{\it m}_{{1 2 2}}&{\it m}_{{1 2 3}}&0&0&{\it m}_{{1 1 1 2}}&0&2~{\it m}_{{1 1 2 2}}&2~{\it m}_{{1 1 2 3}}&0&{\it m}_{{1 2 2 2}}&2~{\it m}_{{1 2 2 3}}&{\it m}_{{1 2 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 3}}&0&0&{\it m}_{{1 1 3}}&0&{\it m}_{{1 2 3}}&{\it m}_{{1 3 3}}&0&0&{\it m}_{{1 1 1 3}}&0&2~{\it m}_{{1 1 2 3}}&2~{\it m}_{{1 1 3 3}}&0&{\it m}_{{1 2 2 3}}&2~{\it m}_{{1 2 3 3}}&{\it m}_{{1 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{2 2}}&0&0&{\it m}_{{1 2 2}}&0&{\it m}_{{2 2 2}}&{\it m}_{{2 2 3}}&0&0&{\it m}_{{1 1 2 2}}&0&2~{\it m}_{{1 2 2 2}}&2~{\it m}_{{1 2 2 3}}&0&{\it m}_{{2 2 2 2}}&2~{\it m}_{{2 2 2 3}}&{\it m}_{{2 2 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{2 3}}&0&0&{\it m}_{{1 2 3}}&0&{\it m}_{{2 2 3}}&{\it m}_{{2 3 3}}&0&0&{\it m}_{{1 1 2 3}}&0&2~{\it m}_{{1 2 2 3}}&2~{\it m}_{{1 2 3 3}}&0&{\it m}_{{2 2 2 3}}&2~{\it m}_{{2 2 3 3}}&{\it m}_{{2 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{3 3}}&0&0&{\it m}_{{1 3 3}}&0&{\it m}_{{2 3 3}}&{\it m}_{{3 3 3}}&0&0&{\it m}_{{1 1 3 3}}&0&2~{\it m}_{{1 2 3 3}}&2~{\it m}_{{1 3 3 3}}&0&{\it m}_{{2 2 3 3}}&2~{\it m}_{{2 3 3 3}}&{\it m}_{{3 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 1 1}}&0&0&{\it m}_{{1 1 1 1}}&0&{\it m}_{{1 1 1 2}}&{\it m}_{{1 1 1 3}}&0&0&{\it m}_{{1 1 1 1 1}}&0&2~{\it m}_{{1 1 1 1 2}}&2~{\it m}_{{1 1 1 1 3}}&0&{\it m}_{{1 1 1 2 2}}&2~{\it m}_{{1 1 1 2 3}}&{\it m}_{{1 1 1 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 1 2}}&0&0&{\it m}_{{1 1 1 2}}&0&{\it m}_{{1 1 2 2}}&{\it m}_{{1 1 2 3}}&0&0&{\it m}_{{1 1 1 1 2}}&0&2~{\it m}_{{1 1 1 2 2}}&2~{\it m}_{{1 1 1 2 3}}&0&{\it m}_{{1 1 2 2 2}}&2~{\it m}_{{1 1 2 2 3}}&{\it m}_{{1 1 2 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 1 3}}&0&0&{\it m}_{{1 1 1 3}}&0&{\it m}_{{1 1 2 3}}&{\it m}_{{1 1 3 3}}&0&0&{\it m}_{{1 1 1 1 3}}&0&2~{\it m}_{{1 1 1 2 3}}&2~{\it m}_{{1 1 1 3 3}}&0&{\it m}_{{1 1 2 2 3}}&2~{\it m}_{{1 1 2 3 3}}&{\it m}_{{1 1 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 2 2}}&0&0&{\it m}_{{1 1 2 2}}&0&{\it m}_{{1 2 2 2}}&{\it m}_{{1 2 2 3}}&0&0&{\it m}_{{1 1 1 2 2}}&0&2~{\it m}_{{1 1 2 2 2}}&2~{\it m}_{{1 1 2 2 3}}&0&{\it m}_{{1 2 2 2 2}}&2~{\it m}_{{1 2 2 2 3}}&{\it m}_{{1 2 2 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 2 3}}&0&0&{\it m}_{{1 1 2 3}}&0&{\it m}_{{1 2 2 3}}&{\it m}_{{1 2 3 3}}&0&0&{\it m}_{{1 1 1 2 3}}&0&2~{\it m}_{{1 1 2 2 3}}&2~{\it m}_{{1 1 2 3 3}}&0&{\it m}_{{1 2 2 2 3}}&2~{\it m}_{{1 2 2 3 3}}&{\it m}_{{1 2 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{1 3 3}}&0&0&{\it m}_{{1 1 3 3}}&0&{\it m}_{{1 2 3 3}}&{\it m}_{{1 3 3 3}}&0&0&{\it m}_{{1 1 1 3 3}}&0&2~{\it m}_{{1 1 2 3 3}}&2~{\it m}_{{1 1 3 3 3}}&0&{\it m}_{{1 2 2 3 3}}&2~{\it m}_{{1 2 3 3 3}}&{\it m}_{{1 3 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{2 2 2}}&0&0&{\it m}_{{1 2 2 2}}&0&{\it m}_{{2 2 2 2}}&{\it m}_{{2 2 2 3}}&0&0&{\it m}_{{1 1 2 2 2}}&0&2~{\it m}_{{1 2 2 2 2}}&2~{\it m}_{{1 2 2 2 3}}&0&{\it m}_{{2 2 2 2 2}}&2~{\it m}_{{2 2 2 2 3}}&{\it m}_{{2 2 2 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{2 2 3}}&0&0&{\it m}_{{1 2 2 3}}&0&{\it m}_{{2 2 2 3}}&{\it m}_{{2 2 3 3}}&0&0&{\it m}_{{1 1 2 2 3}}&0&2~{\it m}_{{1 2 2 2 3}}&2~{\it m}_{{1 2 2 3 3}}&0&{\it m}_{{2 2 2 2 3}}&2~{\it m}_{{2 2 2 3 3}}&{\it m}_{{2 2 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{2 3 3}}&0&0&{\it m}_{{1 2 3 3}}&0&{\it m}_{{2 2 3 3}}&{\it m}_{{2 3 3 3}}&0&0&{\it m}_{{1 1 2 3 3}}&0&2~{\it m}_{{1 2 2 3 3}}&2~{\it m}_{{1 2 3 3 3}}&0&{\it m}_{{2 2 2 3 3}}&2~{\it m}_{{2 2 3 3 3}}&{\it m}_{{2 3 3 3 3}}&\cdots\\ \noalign{\medskip}0&0&{\it m}_{{3 3 3}}&0&0&{\it m}_{{1 3 3 3}}&0&{\it m}_{{2 3 3 3}}&{\it m}_{{3 3 3 3}}&0&0&{\it m}_{{1 1 3 3 3}}&0&2~{\it m}_{{1 2 3 3 3}}&2~{\it m}_{{1 3 3 3 3}}&0&{\it m}_{{2 2 3 3 3}}&2~{\it m}_{{2 3 3 3 3}}&{\it m}_{{3 3 3 3 3}}&\cdots\\ \noalign{\medskip}\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&~\\ \end {array} \right] $$ \vspace*{5mm} \end{table}